
RSock: A Resilient Routing Protocol for Mobile
Fog/Edge Networks

Ala Altaweel∗, Chen Yang∗, Radu Stoleru, Suman Bhunia, Mohammad Sagor,
Maxwell Maurice, Roger Blalock

Abstract

Fog/Edge networks (FENs) refer to wireless networks in which a “close-to-

end-user cloud” is established amongst handheld devices to offer communication,

computation, and storage services. In this paper, we focus on FENs that are

formed by on-body devices of first responders and leveraged (as mission-critical

deployable networks) in disaster-response scenarios. Designing an efficient rout-

ing protocol for such FENs is challenging since they exhibit dynamic connectiv-

ity characteristics and unreliable wireless links due to the mobility of devices,

wireless obstacles, etc. Moreover, FENs applications in disaster-response sce-

narios distribute their processing/storage tasks to local nodes and accordingly

have diverse requirements in terms of packet delivery’s rate and delay (PDR and

PDD). On the other hand, most of the state-of-the-art routing protocols are not

suitable for FENs since their target networks have static connectivity character-

istics. Furthermore, these protocols provide poor support for seamless mobility

communication and for exploiting all devices’ wireless interfaces as well as their

initial/subsequent deployment(s) require pushing changes to the TCP/IP stack.

In this paper, we present Resilient Socket (RSock), a limited-replication-based

routing protocol that decides whether to use packet replication and by how

much based on the mission-critical deployable FENs connectivity conditions.

?Ala Altaweel and Chen Yang contributed equally to this work.
??Ala Altaweel is with University of Sharjah. Chen Yang, Radu Stoleru, and Mohammad

Sagor, are with Texas A&M University. Suman Bhunia is with Miami University of Ohio,
Maxwell Maurice and Roger Blalock are with the National Institute of Standards and Tech-
nology.

Preprint submitted to Ad Hoc Networks May 8, 2022

RSock is an identity-based routing protocol that exploits all wireless interfaces

to route/deliver packets for IP-address/interface agnostic applications. We de-

sign RSock as an easy-to deploy-and-evolve protocol and we demonstrate its

feasibility through a reliable full-system implementation for Linux and Android

platforms. Real-world experiments show that RSock performs well in disaster-

response scenarios.

1. Introduction

Fog/edge networks (FENs) aim to establish a wireless bubble (Wi-Fi and/or

LTE) amongst end-users’ handheld devices (i.e., at the edge of the network) to

enhance their communication, computation and storage capabilities. FENs aim

to reduce the number of tasks that are transferred to the cloud while supporting5

nodes mobility, location awareness, and efficient handling of real-time tasks. In

this paper, we focus on a particular type of Fog/Edge networks (FENs). Specif-

ically, the mission-critical deployable FENs that are formed by the on-body

devices of first responders in disaster-response scenarios [1]. In such scenarios,

a first responders team, who are equipped with mobile devices, aim to accom-10

plish a wide-area search task after a disaster (e.g., earthquake, hurricanes) to

look for victims, as shown in Figure 1a. The team might leverage a manpack

that is equipped with an eNodeB and Wi-Fi hot-spots (as shown in Figure 1b)

to establish communications amongst their handheld devices and to the cloud

via the Command and Control center (C2), as shown in Figure 1c. Typically,15

C2s in such networks are reachable via the vehicular Delay Tolerant Networks

(DTN)’s nodes.

Previous research [2] have shown that the connectivity amongst FENs’ de-

vices has diverse and dynamic characteristics. We also observed and validated

that conclusion during real-world training scenarios for first responders [3].20

Factors such as lack of infrastructure networks, wireless obstacles (e.g., met-

als, concrete blocks, etc.), mobility of devices (e.g., people, ambulances, etc.)

results in unreliable wireless links. Accordingly, the first responders might

2

(a) (b)

(c)

Figure 1: a) First responders team during a disaster with an established mission-critical

deployable FEN. b) A manpack with Wi-Fi and LTE hot-spots for first responders. c) A

schematic of a disaster-response system deployment.

form networks with time-varying topology despite the fact that they might

be in some cases totally disconnected. From another perspective, the appli-25

cations of mission-critical deployable FENs like the Android Team Awareness

Kit (ATAK) [4] [5] that is used by first responders for navigation, situational

awareness, and data sharing, as well as other applications for storage file system

and chatting [6, 7, 8, 9] have diverse requirements in terms of packet delivery

rate and/or delay (PDR, PDD). However, most of the designed/implemented30

state-of-the-art routing protocols [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

perform poorly in all FENs since they are designed with a specific type of con-

nectivity in mind (well/intermittently connected). Furthermore, the aforemen-

tioned protocols do not support seamless endpoint mobility when devices’ IP

addresses change, do not exploit different devices’ wireless interfaces, as well as35

they are only simulated or have a prototype-level (i.e., proof-of-concept) imple-

mentation. It’s not even clear how to deploy these protocols without pushing

3

changes to TCP/IP stacks that typically require OS level patches (i.e., rooted

mobile devices). This coupling of the routing protocols implementation to the

OS limits their deployment velocity and their iteration velocity of even sim-40

ple changes. Hence, the design and full-system implementation of an easy-

to-deploy and easy-to-evolve routing protocol that support seamless mobile-

to-mobile communications, exploit all devices’ wireless interfaces, and is able

to adapt itself in uncertain mission-critical deployable FENs environments and

perform well in the entire range of connectivity is still an open research problem.45

In order to address the aforementioned research challenges, we propose the

design of Resilient Socket (RSock), which is an enhanced version of the Hybrid

Routing Protocol (HRP) [2]. In RSock, we investigated the benefit of packet

replication in terms of packet delay reduction, as it is the key to decide when

and how much replication should be used. The performance of HRP has been50

only evaluated through extensive simulations in the ONE simulator[2, 23]. How-

ever, HRP has not been integrated with other mission-critical deployable FENs

systems, fully implemented for different platforms, deployed into real-world de-

vices, nor rigorously evaluated during real-world scenarios. The contributions

of this paper are as follows:55

• We demonstrate the impact of path delay correlation on the benefit of

packet replication in RSock, and propose a novel model for estimating

inter-contact time without loosing the correlation information (Section 3.2).

The proposed model allows for accurate analysis of packet replication and

the design for efficient forwarding strategies.60

• We propose a novel regret-minimization based algorithm which dynami-

cally and adaptively decides the appropriate amount of packet replication

given any mission-critical deployable FEN environment (Section 3.3).

• We design RSock which adopts a novel forwarding metric called Additional

Contact Rate (ACR) and consists of four main modules (Section 3.4).65

• We demonstrate the feasibility of RSock through a full-system implemen-

4

tation as a user-space service for both Linux and Android platforms to

facilitate its deployment and future evolvements.

• We integrate RSock with EdgeKeeper [24, 25], a novel naming and coor-

dination service for FENs, in order to enable identity-based routing and70

mobile-to-mobile communications via any available wireless interface.

• We integrate RSock with R-Drive [7, 8], a novel resilient data storage

and sharing disaster-response application that is proposed for Android

platforms to support chatting services for disaster-response and tactical

scenarios.75

• We extensively evaluate RSock on two real-world FENs systems in disaster-

response events [3] and through extensive simulations (on a real-world

wireless testbed) and demonstrate its efficacy by showing that it is able

to route packets with high PDR, low PDD, and low overhead (i.e., a com-

petitive performance with up to 3x in terms of delay improvement when80

compared to the state-of-the-art routing protocols).

• We share the lessons learned from our attempts to leverage the Optimized

Link State Routing (OLSR) [17]. We believe that our findings are crucial

to the research community.

The organization of this paper is as follows. In Section 2, we present the85

background, our system models, and the motivation of our research. We present

the design of RSock in Section 3. In Section 4, we present the full-system im-

plementation and the lessons learned. In Section 5, we illustrate our real-world

experiments and the evaluation results. We thoroughly survey the state-of-the-

art routing protocols and the Software Defined Networks (SDN) approaches for90

FENs in Section 6 and finally conclude our paper in Section 7.

2. Background and Motivation

In this section we present the concept of FENs, our system models, and the

motivations for our research.

5

(a) (b)

R-Drive MDFS

(c)

-90
-80
-70
-60
-50
-40
-30
-20
-10

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

outside inside

R
S

S
I(

d
B

m
)

Time(s)

mobile device
reliable delivery

connectivity

(d)

Figure 2: a) Different mission-critical deployable FENs scenarios. b) The PSCR System. c)

DistressNet-NG Software Architecture. d) RSSI of a first responder personnel’s device.

2.1. Fog/Edge Networks (FENs)95

Traditionally, mobile devices, in typical cloud computing paradigms, offload

their computation and storage tasks to remote servers in the cloud. Indeed,

performing the aforementioned tasks on the cloud has been efficient due to

the assumption that the computing power of the cloud servers outperform the

devices’ capabilities at the edge of the networks (i.e., the end users’ devices).100

However, nowadays, due to the growing quantity and quality of the generated

data at the edge from IoT devices like smartphones, wireless sensors, cameras,

etc., the bandwidth and reliability of the communication to the cloud becomes

the bottleneck for the cloud-based computing paradigm [26]. Accordingly, many

researchers proposed the idea of Fog/edge paradigms [27] [28]. As it often hap-105

6

pens with new technologies, a consensus definition of the “Fog/edge” needs some

time to be agreed on by the community to mitigate confusion. However, most

of the first definitions tend to focus on bringing the computation and storage

capabilities close to their data sources. By reducing the distance (i.e., in terms

of network topology) and accordingly the time that is required to send data110

to cloud servers, the performance of data storage, retrieval, and computation

operations can be enhanced. In this paper, the term Fog/edge networks (FENs)

refer to any group of handheld devices (i.e., smartphones, notebooks, etc.) that

are locally connected via their Wi-Fi and/or LTE interfaces. Furthermore, these

devices might be able to connect to a local high-performance computing (HPC)115

node, as shown in Figure 2a. Notice that the environments for the mission-

critical deployable FENs in Figure 2a can be in indoor (homes, offices, etc.)

or outdoor (in a manpack) with first responder personnel during a disaster, as

shown in Figures 1a and 1b.

In such disaster-response scenarios, a FEN is established and utilized by a120

team of first responders, who are equipped with mobile devices and assigned a

wide-area search task in a post-disaster area to discover dangerous zones and

search for victims. The first responders can collect a large amount of data, using

on body video sensors and cameras in order to analyze it in real time. For such

scenario, the data analysis requires significant computational resources and typ-125

ically it is offloaded to the cloud. However, the communication infrastructure

is usually destroyed or debilitated during disasters, which makes leveraging the

computation powers of the nearby mobile devices a promising option. Another

type of mission-critical deployable FENs is the ad-hoc FEN in which handheld

devices like smartphones establish a Peer-to-Peer (P2P) group for communica-130

tion [29]. That is, one device with the Group Owner roles (AP-like functionali-

ties) establishes a Wi-Fi Direct hot-spot to enable other smartphones to connect

to it as clients and communicate amongst each other in an ad-hoc manner, as

shown in Figure 2a. Furthermore, there might be mules that physically move

between FENs (disconnect from one and join another). These mules might be135

users with their handheld devices or vehicular nodes, as shown in Figure 2a.

7

2.2. System Model

In this paper, we have two mission-critical deployable FENs systems with

the following details:

1. The Public Safety Communications Research (PSCR) system [30],140

which consists of LTE and Wi-Fi networks, as presented in Figure 2b. The

LTE network provides broadband connectivity for voice, video, and text

services. The system also contains an application server with Linux OS

that can host our software services that we will discuss below. The system

can be powered by a portable generator and has its antennas mounted on145

top of the cabin of a pickup truck or a table in the field.

2. Our manpack system, as shown in Figure 1b. This system consists of

LTE and Wi-Fi networks and has an application server that is running

on Intel Next Unit of Computing Kit (NUK). We leveraged the NextEPC

project [31], an open source implementation of the 4G/5G 3GPP core150

network that includes the Mobility Management Entity (MME), Serv-

ing Gateway (SGW), Packet Data Network Gateway (PGW), Home Sub-

scriber Server (HSS), and Policy and Charging Rules Functions (PCRF)

to provide the LTE functionalities. The NUC, Wi-Fi router, and eNodeB

are directly powered by inboard batteries inside the manpack that can be155

carried by public-safety personnel during a disaster.

We illustrate in Figure 2c the software architecture of our project, the

DistressNet-NG [1], that we deployed onto the manpack and the PSCR sys-

tems. DistressNet-NG aims to enhance the resilience of both public safety

mission-critical systems and services in the face of connectivity challenges. In160

the following paragraph, we describe our software components in more detail.

MDFS [6] [9] is a crucial disaster-response application. That is, a network-

disconnection resilient-and-fault-tolerant mobile distributed file storage and pro-

cessing system. The reason behind proposing MDFS is that most modern ap-

plications that off-load data to a remote server have an implicit assumption165

8

that the network is always available. However, in FENs, nodes are mobile and

might be disconnected from a remote server. Hence, there is a crucial need for a

distributed data sharing and processing mechanism that is resilient to network

failures and delay tolerant. MDFS is proposed and implemented to store and

process data in multiple mobile devices in a distributed manner, incorporating170

a delay tolerant scenario in FENs. MDFS followed a design structure so that

it can be portable for both Linux and android platforms. Moreover, it provides

the traditional file system functionalities (e.g., create, retrieve, remove) with

standard Unix-like access control list and data-level encryption.

R-Drive [7, 8] is a novel resilient data storage and sharing disaster-response175

application that is proposed for Android platforms to support chatting services

for disaster-response and tactical scenarios. R-Drive provides uni-cast chatting

services for text, image, video, and voice messages. R-Drive employs erasure

coding and data encryption, ensuring resilient and secure data storage against

device failure and adaptively chooses erasure coding parameters to ensure high-180

est data availability with minimal storage cost. For each user, R-Drive lists all

other team members such that the user can select the destination(s) for the

messages

MDFS requires a naming and coordination service for distributing its storage

tasks as well as a fault-tolerant directory-service where the directory structure185

of the file system is maintained. Similarly, R-Drive requires a naming service

for its ID-based communications. That’s why we proposed EdgeKeeper [24, 24],

a resilient and distributed coordination service for FENs. By following the

Apache Hadoop system, EdgeKeeper provides Zookeeper-like services for FENs

applications. EdgeKeeper is implemented for Linux and Android platforms190

and runs as a background service to provide resilient coordination services like

network management, application-coordination, etc. An important component

of EdgeKeeper is its topology manager, which runs a discovery service where

each device periodically pings other devices in the same FEN to determine all

device-to-device link qualities. If there are multiple links available between a195

pair of devices (e.g., LTE and Wi-Fi), the topology manager maintains separate

9

link qualities for these links.

2.3. Motivation: Why RSock?

Diverse Connectivity Characteristics in mission-critical deployable

FENs. We observed that the devices, in real-world disaster-response scenarios,200

often exhibit diverse connectivity characteristics. Factors such as mobility of de-

vices and obstacles cause unreliable wireless links, which lead to a network with

rather dynamic connectivity. Moreover, the mobility of first responders makes

the network connectivity range from well-connected to almost disconnected. For

example, Figure 2d shows the Wi-Fi Received Signal Strength Indicator (RSSI)205

value of a mobile phone carried by a first responder during a wide area search

exercise while connected to the Wi-Fi router in our manpack system that is

shown in Figure 1b. Due to node mobility, signal shielding and attenuation,

the RSSI value changes and frequently goes below the minimum threshold value

that is required for the reliable connection. Furthermore, with the proliferation210

of wireless capable devices, we believe that mission-critical deployable FENs’

users have increasing opportunity to encounter real-world disaster-response sce-

narios with diverse connectivity in the future. Hence, there is an urgent need for

a routing protocol that is able to fulfill and guarantee the diverse requirements

of different applications like ATAK, MDFS, R-Drive [4, 6, 7, 8, 9] in terms of215

PDR and PDD. Hence we design and implement in Section 3.4.2 (Replication

Factor Decision) the Replication Factor Decision module of RSock as shown in

Figure 6 to decide whether to use packet replication and by how much based on

the current connectivity conditions.

Seamless Mobility and Multipath Communication. Mobile devices220

(smartphones, tablets, notebooks, etc.) and their applications have experienced

a huge growth in recent years with higher number nowadays compared to teth-

ered hosts. The overall mobile data traffic is expected to grow to 77 exabytes

per month by 2022 [32]. Even though the Internet’s TCP/IP stack has accom-

modated this phenomenal transformation so far, it still provides poor support225

for seamless endpoint mobility, multipath, and mobile-to-mobile communica-

10

tion. Hence, mobile application developers nowadays have to adopt redundant

and fragile application-layer workarounds to address the aforementioned issues.

Accordingly, the design and implementation of location-independent communi-

cation service is of utmost importance to facilitate the development of mission-230

critical deployable FENs mobile applications. In order to enable the location-

independence communication service, we focus on the following goals when we

design RSock. First, seamless mobility that aims to allow handheld devices

to freely move across network addresses of different mission-critical deployable

FENs while relieving the application developer from keeping track of them. Sec-235

ond, since mission-critical deployable FENs mobile devices are equipped with

multiple network interfaces such as LTE, Wi-Fi, and Wi-Fi Direct. We aim to

leverage these interfaces and seamlessly switch amongst them while relieving

the application developer from handling this. Hence, we design RSock and its

user-level socket library (i.e., RSock library) to enable the location-independent240

communication service. RSock library, as we will present in Section 3.4.1, can

be leveraged by any mission-critical deployable FENs mobile application with

minimal code changes.

Deploy-ability and Evolve-ability. Many routing protocols [10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22] have been proposed in recent years to meet245

the evolving applications demands in wireless networks. However, they have

not seen wide deployment. Middleboxes and firewalls have accidentally become

key crucial points in today’s wireless networks architecture. Firewalls used to

block anything unfamiliar for security reasons and Network Address Translators

(NATs) rewrite the transport layer packets’ headers, making it hard to allow250

traffic from new routing protocols without adding explicit support for them.

Apart from that, even modifying current routing protocols remains challenging

due to its stiffening by middle boxes. As a result, deploying changes to routing

protocols are now expected to take long a time (i.e., years). Moreover, as the

wireless networks nowadays continue to evolve, there is a crucial need to be able255

to deploy changes to routing protocols rapidly. For example, the latest releases

of OLSR and Prophet protocols [17, 18, 33, 34] require root privileges and OS

11

upgrades to be able to run/update. In order to resolve the aforementioned issues,

we design RSock as a user-space protocol that leverages UDP for its data and

control packets to facilitate its deployment and enable iterative modifications260

to occur at application update timescales.

3. Resilient Socket

In this section, we present our preliminaries, basic idea, and how RSock

makes routing decisions and its design details.

3.1. Preliminaries265

We first introduce three concepts that we use in our design.

Definition 1. Inter-contact time (ICT): the time duration between two contact

events between a pair of nodes in mission-critical deployable FENs.

Definition 2. Replication factor r: the total number of data copies created at

the source for a given packet.270

If Dr is the random variable for routing delay when the replication factor is

r, then:

Definition 3. Replication gain γr = E[D1]/E[Dr].

Basically, r limits the total number of copies for a packet and γr captures the

benefit of replication in terms of delay improvement. Notice that γr depends275

on the forwarding strategy of a routing protocol. In particular, if the packet

copies are routed along a set of paths P , where each path has delay Xi, then

the replication gain is γPr = mini∈P {E[Xi]}/E[mini∈P {Xi}]. In the following

sections, we propose a novel model for ICT estimation that incorporates the

correlation among a group of nodes. We will show, by a simple example, that280

delay correlations among different nodes can significantly affect the benefit of

replication. Motivated by this observation, we propose a novel Joint ICT model

that quantitatively captures the correlation among different mission-critical de-

ployable FENs nodes.

12

Y
1

Y
2

Y
3

Y
4

 X1: <Y1>

X2: <Y2+Y4>

X3: <Y3+Y4>

Figure 3: A simple network model where {Yj}4j=1 denotes link delays and {Xi}3i=1 denotes

path delays.

3.2. Basic Idea285

In this section, we present the basic idea that is behind our RSock routing

and replication policy. That is, how delay correlation amongst mission-critical

deployable FENs nodes adversely affects the benefit of replication. Let’s illus-

trate this via a simple example as shown in Figure 3. vs sends packets to vd

with replication factor r = 2 and it can uses paths {Xi}3i=1, consisting of links290

{Yj}4j=1, which are independently and exponentially distributed. Then, the

replication gain from using paths {Xi, Xj} is γi,j2 = min{E[X1],E[X2],E[X3]}
E[min{Xi,Xj}] (i.e.,

when r = 1 the shortest path is used). Notice that the delays of X2 and X3 are

positively correlated due to the common link Y4, and the correlation becomes

stronger when E[Y4] increases. X1 is independent of both X2 and X3.295

When all paths have identical expected delay, correlated paths always have

smaller replication gain, and the replication gain decreases when the correlation

becomes stronger. We fix E[Xi] = 60 for i = 1, 2, 3 and vary E[Y4] while examine

the replication gain γ1,22 and γ2,32 . As shown in Figure 4a, γ1,22 remains relatively

high due to the independence of delay. But γ2,32 quickly approaches 1 when E[Y4]300

increases, indicating a drastic decrease of benefit from replication. If vs assumes

independence of path delays, it cannot accurately estimate the replication gain

and may make sub-optimal decisions. Indeed, redundancy helps improve system

performance, but we should utilize resources as diverse as possible to maximize

the benefit [35].305

However, if independent paths have inferior performance, it might still be

wise to utilize correlated paths. To see this, we fix E[X2] = E[X3] = 60 and let

E[X1] = 60 + x where x > 0. By varying both x and E[Y4], we observe that

13

there exist threshold x∗, above which γ2,32 becomes larger than γ1,22 , as shown

in Figure 4. This indicates that better performance is achieved when correlated310

paths are used. Notice that x∗ increases with E[Y4] (i.e., it is related to the

correlation between X2 and X3). Hence, in order to accurately estimate the

replication gain and make better routing decision, it is important to capture the

delay correlation. {Xi}3i=1 may correspond to the ICTs between three mobile

nodes and the destination. Therefore, it is paramount for vs to be aware of315

the potential correlations between the ICTs in order to accurately estimate the

replication gain.

Table 1: Symbols used in this paper

r Replication factor

γr Replication gain for r

πππ, πr Probability distribution for replication factors

ggg, gi Vector in {0, 1}n, representing a group of mission-critical deployable FENs nodes

λggg Contact rates for a group of mission-critical deployable FENs nodes ggg

Given the above insights, we propose to jointly capture the ICTs between

mission-critical deployable FENs nodes such that the correlation information

is preserved, which enables more accurate estimation of the replication gain.320

Intuitively, the ICTs of two nodes are correlated if the observer often meets

both of them at the same time. Consider the contact processes between node v,

and nodes v1 and v2, as shown in Figure 5 (the right hand side of which shows

the contact processes). Notice that node v has met v1 and v2 for 7 and 6 times,

respectively. Out of these, 4 times it meets them at the same time. In this case,325

ICTs Y1 and Y2 can no longer be assumed as independent.

We use the Marshall and Olkin’s Bivariate Exponential Distribution (BVE) [36]

to model the 2-D joint ICT distribution for a pair of nodes.

Definition 4. Marshall and Olkin’s Bivariate Exponential Distribution: ran-

dom variables Y1 and Y2 follow330

BVE(λ1, λ2, λ12), if the joint distribution satisfies Pr(Y1 > y1, Y2 > y2) =

14

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60

R
e
p
lic

a
ti
o
n
 G

a
in

E[Y4]

γ2
12

γ2
23

(a)

 1

 1.3

 1.6

 1.9

 0 30 60 90 120

R
e
p

lic
a

ti
o

n
 G

a
in

x

E[Y4]=10

γ2
12

γ2
23

(b)

 1

 1.3

 1.6

 1.9

 0 30 60 90 120

R
e

p
lic

a
ti
o
n

 G
a
in

x

E[Y4]=30

γ2
12

γ2
23

(c)

 1

 1.3

 1.6

 1.9

 0 30 60 90 120
R

e
p
lic

a
ti
o
n

 G
a
in

x

E[Y4]=50

γ2
12

γ2
23

(d)

Figure 4: a) Fix E[Xi] = 60 min, i = 1, 2, 3, and varying E[Y4]. b, c, d) Fixing E[X2] =

E[X3] = 60 min, and varying x.

e−(λ1y1+λ2y2+λ12 max(y1,y2))

BVE was derived from a “fatal shock” model of a two component system,

which is similar to the contact process shown in Figure 5. In the “fatal shock”

model, shocks arrive at the system according to three independent Poisson335

processes with λ1, λ2 and λ12 parameters, and are applied to component 1,

component 2, and both, respectively. The lifetimes of Y1 and Y2 components

follow BVE. Similarly, the contact process between v, v1, and v2, can be seen

as three independent Poisson processes with λ1, λ2 and λ12 parameters, where

two processes govern v1 and v2 individually, while the third process charac-340

terizes the events when both v1 and v2 meet v. In this case, Y1 and Y2 are

BVE jointly distributed with exponential marginals and correlation coefficient

= λ12/(λ1 + λ2 + λ12).

Although BVE can be used to model correlated ICT for a pair of nodes, in

real-world scenarios, a node may also meet with a group of nodes on a regular345

15

t

t

Figure 5: Contact process between (v, v1) and (v, v2).

basis. It is therefore necessary to characterize the joint distribution of a group

of nodes. BVE is a special case of a Multivariate Exponential Distribution

(MVE) [36], which can be used to model multi-dimensional joint ICT. MVE is

defined as follows: Let G denote the set of vectors ggg = (g1, . . . , gn) where each

gi = 0 or 1, but (g1, . . . , gn) 6= (0, . . . , 0). For a vector ggg ∈ G, let max(yigi)350

denote the maximum of the yi’s for which gi = 1.

Definition 5. Y1, . . . , Yn random variables follow Multivariate Exponential Dis-

tribution, if their joint distribution satisfies:

Pr(Y1 > y1, . . . , Yn > yn) = exp [−Σggg∈Gλggg max(yigi)]

As an example, consider n = 3: λ(100) = λ1, λ(010) = λ2, λ(001) = λ3 are355

parameters for Poisson processes that govern each individual node; λ(110) = λ12,

λ(101) = λ13, λ(011) = λ23, are parameters that govern each pair of nodes;

and λ(111) = λ123 is the parameter that governs all three nodes. Marginal

distribution of Y1 and Y2 follows a BVE(λ′1, λ
′
2, λ
′
12), where λ′1 = λ1 + λ13,

λ′2 = λ2 + λ23, λ′12 = λ12 + λ123. Throughout this paper, we use ggg to denote a360

group of nodes, i.e., the node set {vi : gi = 1}.

In a real-world scenario, a node experiences a sequence of contact events,

from which it estimates the parameters of the MVE distribution. We adopt a

simple consistent and unbiased estimator derived in [37]. Consider that a node

v has N encounter events within time T . At each event node v may meet one or

more nodes. Let Eggg,j = 1, if at the j-th event node v encounters a set of nodes

{vi : gi = 1}; and Eggg,j = 0 otherwise. Then the estimation of λggg given these N

observations is given by:

λ̂ggg,N =
1
NΣNj=1Eggg,j

T
N−1

(1)

16

Algorithm 1 MVE Parameter Estimation For Node v

1: Initialize EncounterSet = ∅, T = 0, N = 0

2: nextT imer ← δ

3: upon connection up event

4: Add newneighbor to EncounterSet

5: upon nextT imer fired event

6: Set nextT imer ← nextT imer + δ

7: T = T + δ

8: if EncounterSet 6= ∅ then

9: N = N + 1

10: if no counter exist for EncounterSet then

11: Create new counter for EncounterSet

12: counter = 0

13: Increment counter for EncounterSet

14: EncounterSet← ∅

15: Update parameters for all EncounterSet according to Equation 1

In the example shown in Figure 5, N = 9 contact events for node v. Assuming

that the last event is at time T , according to Equation 1, we have λ̂(10),9 = 8
3T ,

λ̂(01),9 = 16
9T , λ̂(11),9 = 32

9T . In real-world scenarios, contact events with multiple

nodes do not happen at the exact same time. We therefore aggregate multiple365

contact events that happen within an estimation time window as a single contact

event with multiple nodes.

We present the MVE parameter estimation algorithm for a node v in Algo-

rithm 1. We first initialize T , N and EncounterSet (used to aggregate nodes

contacted in the estimation time window δ). The nextT imer is scheduled to370

fire at time t=δ. Upon each contact event, the newly encountered node is added

to EncounterSet (lines 3 to 4). When the nextT imer is fired, the nextT imer

is set up (line 6) and T is incremented by one estimation time window. If

the EncounterSet is not empty, node v has met some nodes during the time

window. The total contact event counter, N , is updated (line 9). Next, if no375

17

counter exists for the encountered set of nodes, a new counter is created (lines 10

to 12). Then, the counter for the encountered set of nodes is incremented and

the EncounterSet is reset to empty. Finally, all the parameters are updated

using Equation 1.

3.3. How to decide replication factors?380

We have shown how delay correlation can affect replication gain and how to

capture potential ICT correlations, however, we still need a mechanism to decide

appropriate replication factors. Hence, we propose a novel algorithm based on

regret-minimization [38] to dynamically decide replication factor. The objective

of our algorithm is to obtain the best replication factor while we gain more385

information about the network and minimize the total cost (we define later).

Our basic idea is to use a probability distribution to represent the preference of

choosing a particular replication factor. Based on the probability distribution,

RSock draws the value of the replication factor such that it is able to seamlessly

switch between a single-copy to a multi-copy protocol based on current mission-390

critical deployable FENs connectivity conditions.

In order to demonstrate our idea, let us consider that each node in mission-

critical deployable FENs as a player, who needs to repeatedly take actions

(choosing a replication factor for a packet) under an uncertain environment

(unknown network condition). Each time the node takes an action, the net-395

work gives a feedback (e.g., delay, resource utilization). The algorithm aims to

learn the best policy, which is a probability distribution over a set of actions, for

such an environment. A powerful technique for analyzing this problem is the

Regret Analysis [38]. We aim for an algorithm which performs as good as the

best action we could have used if we knew the network condition a priori. The400

performance degradation between our algorithm and the best action is defined

as regret.

Let us assume a network with a set of nodes V and a pair of source and des-

tination nodes (vs, vd). At time slot t, vs chooses a probability distribution over

a set of replication factors, i.e., πππt = {πtr}
rmax
r=1 . It then calculates a loss vector405

18

Algorithm 2 Polynomial Weighted Algorithm

1: Initialize wr = 1 for r = 1, · · · , rmax; α, η ∈ (0, 1)

2: at time slot t:

3: for r = 1, · · · , rmax do

4: Estimate delay Dr for r, set γr = D1/Dr

5: Update ltr

6: Set wr = wr · (1− η · ltr)

7: for r = 1, · · · , rmax do

8: Set πtr = wr/
∑rmax

i=1 wi

lt = {ltr}
rmax
r=1 (we define later) and experiences an expected loss of

∑rmax

r=1 ltrπ
t
r.

After T time steps, node v’s total loss is
∑T
t=1

∑rmax

r=1 ltrπ
t
r. vs draws replica-

tion factors using the same distribution and experiences the same expected loss.

In retrospect, however, vs could have chosen the same action i that results in

the minimum total loss, i.e., with loss LTi = minr
∑T
t=1 l

t
r. The performance410

degradation of
∑T
t=1

∑rmax

r=1 ltrπ
t
r − LTi is then defined as regret, which is to be

minimized.

We define the loss function to reflect the trade-off of two objectives, i.e.,

minimizing delay and resource utilization.

Definition 6. The loss function for r:

ltr = α · 1

γr
+ (1− α) · r − 1

rmax − 1
, s.t. α ∈ (0, 1), rmax > 2.

1
γr
∈ (0, 1] is the inverse of replication gain, which approaches 1 when there is415

no benefit of replication. r−1
rmax−1 represents the loss of resource utilization. α ∈

(0, 1) is a parameter that reflects the preference between optimizing performance

and reducing overhead.

To decide the probability distribution of replication factors, we adopt the

Polynomial Weighted (PW) algorithm, as presented in Algorithm 2. A weight420

wr is assigned to each r, and is initialized to 1 at t = 0. At each time slot

(lines 3 to 8), new estimations of the delays are obtained. ltr, wr and πr are then

updated accordingly. At the end of each time slot, we have a new replication

19

factor distribution. In order to run the algorithm, we need to estimate the delay

of packets when different replication factors are used. In our design, RSock in425

each mission-critical deployable FENs device keeps sending probe packets to

neighbors periodically using different replication factors to obtain the delay

estimation. The PW algorithm is guaranteed to converge to zero regret after

sufficient amount of time, and achieves near optimal performance in terms of

regret (i.e., total cost) minimization [38].430

3.4. RSock Design

Our RSock mainly consists of four modules, as shown in Figure 6. As we

illustrated in Section 2.2, each mission-critical deployable FENs node runs Edge-

Keeper, which has the topology manager service. The MVE Estimation module

is responsible for estimation MVE parameters using Algorithm 1, which uses435

node events from EdgeKeeper. Each node also periodically exchanges the MVE

parameters with their neighbors, as we presented in Section 3.3. In the fol-

lowing sections, we introduce the details for Applications Packets Mux/Demux,

Replication Factor Decision, and Packet Forwarding modules.

3.4.1. Application-layer Packets Mux/Demux Module440

The communications between any application and RSock daemon in any

device is accomplished via RSock Library, as shown in Figure 6 for R-Drive,

MDFS, or any future application. RSock Library employs a TCP socket to

handle the following Application Programming Interface (API) calls:

1. Registration API call, in which the application registers itself with RSock.445

The registration is accomplished with three tuples< LocalID, AppID, QoSval >.

LocalID represents the local device ID (40-character string) that is ob-

tained from EdgeKeeper and used in the sender field of RSock data pack-

ets. AppID is a random string that the application generates for itself.

AppID is used by RSock for multiplexing and de-multiplexing purpose450

when sending and receiving packets from different applications, respec-

tively, (i.e., as is the case of TCP/UDP port numbers). Notice that in

20

our current design, RSock guarantees the uniqueness of each application’s

AppID. That is, the daemon rejects any application that tries to register

with an already used AppID. QoSval is used to define any Quality-of-455

Service parameter for the packets. RSock provides a Time-to-Live (TTL)

QoS parameter. That is, the maximum delay, in seconds, that the sender

can tolerate before its packets get delivered to the final destination. If any

packet’s TTL expired before it reaches the final destination, it is simply

dropped.460

2. Transmission API call, in which the application sends a data with five

tuples: < Hash,Bytes, Size, Type,DestID >. The Hash field contains

the generated hash value by the sender for the data, which is used by

RSock for fragmentation and de-fragmentation purposes in case the data

size exceeds the IPv4 packet size (64KB). Bytes and Size fields contain465

the bytes of the data and its corresponding size, respectively. Type field

specifies whether this is a registration packet or not (it can be leveraged for

future enhancement). DestID is the destination device’s ID (i.e., obtained

from EdgeKeeper).

3. Receiving API call. A zero-parameter blocking call in which the applica-470

tion waits for receiving any data. The returned data contains the Hash

value that the sender generated, data size, and the data itself as a byte

array.

4. Termination API call, in which the application terminates its connection

(i.e., un-register) with the RSock daemon. RSock drops any received pack-475

ets for any terminated application.

3.4.2. Replication Factor Decision

This module maintains the replication factor probability distribution πππ. In

order to calculate πππ, we need accurate information of packet delays for any given

replication factors to derive corresponding replication gains. One way to achieve480

21

R-DriveMDFS

Figure 6: RSock architecture.

this goal is through direct-feedback from destination nodes. For example, des-

tination nodes send ack packets once they receive the earliest delivered packet

and we estimate delays as half of the Round Trip Time (RTT). This module

runs an instance of Algorithm 2 and produces πππ. That is, RSock daemons ex-

change MVE information once they discover each other and send probes to each485

discovered neighbor every tprobe seconds in order to collect delay information

for different replication factors. The probes are sent along r paths specified

by the Replication Factor Decision module. We leveraged Yen’s algorithm [39]

for finding multiple shortest paths to the destination. Once RSock receives a

probe, it immediately sends back a reply. Upon the reception of the reply, the490

sender then feeds the round-trip time (RTT) to the Replication Factor Decision

module to calculate replication factor distribution. In our implantation as we

will present is Section 5, tprobe value is adjustable from the configuration file (its

default value is set to 2 seconds). Once the replication factor distribution, πππm,

converge, no additional probes are sent. In order to save bandwidth, we adopt495

a slow reduce, fast recover approach to adjust the tprobe. That is, tprobe is set

to 2 · tprobe each time the absolute difference between πm,r and its last value is

within 1%, for all r. Otherwise, tprobe is set back to its default value.

22

3.4.3. Packet Forwarding Module

This module implements the forwarding strategy. It uses a novel metric500

called additional contact rate (ACR) for measuring delivery capability, which

is built using MVE parameters to incorporate the potential ICT correlation

between different mission-critical deployable FENs nodes. It draws replication

factors using πππ produced by the Replication Factor Decision module that we

described above for new packets.505

The packet copies specified by the Replication Factor Decision module need

to be forwarded to appropriate packet carriers. We therefore use the MVE

parameters and define a new forwarding metric called additional contact rate

(ACR) that depends on the existing set of packet carriers. Let ccc denote the

current set of packet carriers, and C = {j : cj = 1}.510

Definition 7. ACR for node i to destination dst given packet carrier set ccc:

ACRv|ccc =
∑

ggg:gi=1,gj=0,j∈C
λdstggg

ACRv|ccc accounts for the correlation of ICTs to the destination, between v

and the existing set of carriers. If v is highly correlated, ACRv|ccc is likely to

be small since the additional contribution made by v is little. To facilitate the

forwarding strategy for RSock, we augment the packet header with four new

fields.515

1. nrofCopies is the remaining number of data copies.

2. nextCarrier specifies the intermediate destination for the packet. The

current carrier sets this field when it decides to forward the packet to that

node.

3. carriers contains a list of packet carriers that currently hold this packet.520

This field facilitates the forwarding strategy to evaluate the ACR metric

of a node.

4. path contains a list of nodes that specifies a shortest path leading to the

nextCarrier in the current network.

23

Algorithm 3 RSock Forwarding Algorithm For Node v

1: Neighbors← TopologyManagement.Neighbors

2: for all Packet m do

3: if m.dst is in Neighbors then

4: m.nextCarrier ← m.dst

5: Find m.nrofCopies shortest paths to m.dst

6: Send m along each path

7: else if m.nrofCopies > 1 then

8: ccc← m.carriers, ccc′ ← m.carriers\{v}

9: u← arg maxu∈NeighborsACRu|ccc

10: if ACRu|ccc > ACRv|ccc′ then

11: Duplicate m′ ← m

12: m′.nextCarrier ← u

13: m′.path← ShortestPath(u)

14: m′.nrofCopies = m′.nrofCopies− 1

15: Send m′ along m′.path

16: Update m.nrofCopies = 1

We present the forwarding strategy in Algorithm 3. If the destination is in525

the same network with v, we send the packet along nrofCopies paths (lines 3-

6). This allows us to take advantage of the replication to deal with the potential

lossy mesh network which v is connected to. If the network is well-connected,

the nrofCopies output by the learning algorithm has high probability to be

1, and thus reduces to a single shortest path forwarding. If the destination is530

not available and nrofCopies > 1, we send nrofCopies − 1 copies to the best

possible carrier according to the ACR metric (lines 7- 16). Notice that only the

carrier with more than 1 copy can replicate the packet and update the carriers,

while other carriers only forward to the destination. Also, at any given time,

there is at most one node with more than 1 copy. This allows RSock to keep535

track of the current packet carriers and to evaluate the ACR metric.

When a node receives a packet, it first checks if it is the destination. If it

24

Figure 7: Initial RSock architecture.

is the destination, the node sends back an ACK containing the delay of the

packet. Otherwise, it adds itself to the carriers if it is the nextCarrier or

simply forwards the packet to the next hop according the path field if it is not540

the nextCarrier.

4. Implementation and Lessons Learned

Our first release of RSock was implemented using C++ as a user-space dae-

mon service [40]. The design of this release is presented in Figure 7. The daemon

handles both control traffic and the data packet forwarding. We leverage Op-545

timized Link State Routing (OLSR) [41] for topology maintenance. That is,

RSock invokes olsrd [17], an OLSR implementation, continuously to fetch the

topology information (the graph view of the current connected network) from

it. OLSR is a table-driven, proactive routing protocol developed for mobile

ad-hoc networks. OLSR optimizes the pure link state protocol by reducing the550

size and number of the control packets that have to be transmitted between

the nodes in the network. That is, by only sending packets to the Multipoint

Relays (MPR), which is the minimum set of any node’s one-hop neighbors that

are able to reach all two-hop neighbors, instead of flooding the whole network.

The network topology information in OLSR is periodically maintained by ex-555

changing link state information. OLSR is implemented as a user-space daemon

25

(a) (b)

(c)

Figure 8: a) A view of Disaster City. b) First responders team during a search-and-rescue

mission with our manpack system during 2020 Winter Institute exercise in Disaster City. c)

Smartphones used in our experiments.

service [17] and we cross-compiled for Android platforms. Our initial release

of RSock has been evaluated during 2018 and 2019 Wireless institute exercises.

In the following paragraphs, we will discuss the design and implementation’s

limitations of this release and how we addressed them.560

Problems with IP-layer broadcast messages. In OLSR, each node

broadcasts (to 255.255.255.255 IP address) hello message to discover other nodes

and to calculate the link qualities and shortest paths in the network. How-

ever, we found that the LTE links in the NextEPC project [31] (that we lever-

aged in our manpack system) do not support broadcast messages. As a result,565

OLSR daemons were not able to discover each other over the LTE links. As a

workaround and in order to enable the neighbor discovery over LTE links, we

modified the OLSR daemons code for both smartphones and NUC (i.e., Android

26

and Linux platforms). That is, the OLSR daemons on the smartphones have to

uni-cast their hello messages to the OLSR daemon running at the NUC, which570

replies by uni-casting it’s hello messages to the sender IP address. We faced a

similar problem when we run OLSR daemons on the PSCR system. In which,

the IP-layer broadcast messages are, by the default configuration, disabled for

both Wi-Fi and LTE links for security purposes.

Seamless switching amongst interfaces. One major goal of our design,575

is to leverage the Wi-Fi and LTE links that are established between the smart-

phones and the manpack/PSCR systems. And that’s why we decided to rely on

OLSR, which in its RFC [41] claims that it is able to work on multiple interfaces

and finding the shortest path (i.e., in terms of link qualities) amongst the nodes.

RSock leverages the Jsoninfo plugin of OLSR for topology maintenance by in-580

voking it periodically and fetching topology information from it. However, we

found that the current OLSR and Jsoninfo plugin implementations [17] do not

handle the scenarios when a smartphone switches amongst interfaces or changes

it IP address on any interface. That is, the Jsoninfo plugin keeps announcing the

stale IP address (i.e., the initial IP address of the interface in which the OLSR585

daemon was initiated) and never updates it. We fixed this bug by modifying

the OLSR code [40] in order to keep Jsoninfo plugin aware of the updated/new

IP address of the same/new interface of the device.

Running OLSR on unrooted Android smartphones. The latest re-

lease of OLSR [17] is only run-able on rooted Android smartphones. That is590

because OLSR updates the routing table in Android OS and accordingly re-

quires root privileges for that. However, PSCR first responders’ smartphones

in the public safety department [30] are unrooted. Indeed, rooting first respon-

ders’ smartphones is not recommended from security perspectives and it voids

the smartphone warranty. Hence, in order to enable OLSR to run on unrooted595

Android smartphones, we provided a modified version of OLSR [40] that can

be used for neighbor discovery and to calculate the link qualities amongst the

devices (i.e., it doesn’t update the phones’ routing tables).

Development and deployment of OLSR and RSock. We cross-compiled

27

our C++ RSock implementation and the modified version of OLSR for Android600

platforms using the ARM toolchain [42]. The deployment of these daemons was

accomplished using the Android Debug Bridge (adb) [43] tool that pushes the

daemons to the smartphones’ file-systems via USB cables. On rooted smart-

phones, OLSR and RSock daemons can be initially pushed to any directory

under the sdcard path and then (with root privilege) moved to any directory605

under the data path, in which they are able to run. On unrooted smartphones,

we had to rigorously search (via trial and error) for the data/local/tmp path in

which we could run both daemons. Indeed, the C++ implementations of these

daemons hamper their development, debugging, and deployment tasks. That is,

any code change requires the tedious cross-compilation and deployment process.610

The debugging was accomplished using the log files.

Due to the above issues/limitations, we enhanced RSock design, as we pre-

sented in Section 3, with the below goals.

Enable identity-based routing. The routing in the initial design of RSock

was accomplished using nodes’ IP addresses that are obtained from OLSR. That615

is, OLSR represents the network by an undirected graph G = (V,E), where V

is a set of nodes’ IPs and E is a set of links. However, due to mobility, smart-

phones’ IP addresses might change (i.e., in case of re-association or switching

among different interfaces). Accordingly, the destination IP address that any

application uses when sending data might be stale. In order to resolve the afore-620

mentioned issue, we integrated RSock with EdgeKeepr, as shown in Figure 6,

in order to use its ID-based topology information. That is, each vertex in G is

represented by node’s ID instead of IP.

Easy deployment and running of RSock. We implemented RSock as an

Android service [40], which is an application component that can perform long-625

running operations in the background for both Android and Linux platforms.

RSock service can be installed as a regular Android App and it provides a

simple user-friendly interface for starting and stopping purposes. Moreover,

it is able to continuously run in the background even if the user switches to

another application (e.g., R-Drive or MDFS). MDFS, R-Drive, and any future630

28

100 meter

(a)

100 meter

(b)

Figure 9: A schematic diagram of the manpack system, PSCR system, and ad-hoc-FEN sys-

tem. Mules connectivity during: a) TC1 - TC5 of Experiment-F. b) TC1 - TC6 of Experiment-

G. Solid lines represent simultaneous Wi-Fi and LTE links. Dashed lines represent Wi-Fi or

Wi-Fi Direct links.

application of RSock can bind and interact with it by performing inter-process

communication (IPC) calls via Rsock Library, as we illustrated in Section 3.4.1.

5. RSock Evaluation

In this section, we present our experimental setup and the evaluation results

of RSock in real-world scenarios.635

5.1. Evaluation during the Winter Institute Exercise

Our experiments were conducted on our manpack and the PSCR systems

(presented in Section 2.2) during the Winter Institute exercise event in Disaster

city [3] on January 2020. Disaster city is a comprehensive 52-acre training facil-

ity for emergency responders with extremely realistic wrecks, including several640

rubble piles of wood and concrete, as shown in Figure 8a. During the event,

a team of first responders performed a wide-area search-and-rescue missions

that mimicked looking for victims after a disaster, as shown in Figure 8b. We

deployed RSock, R-Drive, and EdgeKeeper into the two systems and ten smart-

phones (their specifications are shown in Figure 8c). In the following paragraphs,645

we present our experiments:

29

 0

 50

 100

 150

 200

 250

 300

 350

TC1 TC2 TC3

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(a)

 0

 25

 50

 75

 100

 125

 150

 175

TC1 TC2 TC3 TC4

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(b)

 0

 100

 200

 300

 400

 500

 600

P2->P3
P2->P4

P3->P2
P3->P4

P4->P2
P4->P3

P
a
c
k
e
t
D

e
la

y
 (

s
)

Sender to Receiver

5MB

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

TC1 TC2 TC3 TC4 TC5

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(d)

Figure 10: Packet Delay for all test cases for: a) Experiment-A. b) Experiment-B. c)

Experiment-C. d) Experiment-D.

1. Experiment-A: This experiment was conducted with P1, P2, and P3 smart-

phones that were connected using LTE to the manpack system with three test

cases: TC1-TC3. In which, each phone sent 10KB, 1MB, and 5MB files (images

or videos) to two other phones.650

2. Experiment-B: This experiment was conducted with P2, P3, and P4 smart-

phones that were connected using Wi-Fi to the manpack system with four test

cases: TC1-TC4. In which, each phone sent 10KB, 200KB, 1MB, and 21MB

files to two other phones, respectively.

3. Experiment-C: This experiment was conducted with P2, P3, and P4 smart-655

phones that were simultaneously connected using Wi-Fi and LTE to the man-

pack system. Each phone sent a 5MB file to two other phones. Then, after 10

seconds (i.e., of start sending the file) all phones were manually entered into

airplane mode (disconnected from LTE and Wi-Fi). Then, after 5 minutes,

30

airplane mode was disabled (the phones received LTE and Wi-Fi connections660

again).

4. Experiment-D: This experiment was conducted with seven smartphones

that were connected to the manpack system as follow: P1-P3 via Wi-Fi and P4-

P7 via LTE. In TC1, P1 sent a “hi” text message to all other phones. Then, in

TC2, P1 sent a 10KB file to all other phones. In TC3 and TC4, P1 sent a 200KB665

and a 1MB file to all other phones. In TC5, all phones except P1 were manually

entered into airplane mode for 5 minutes. Meanwhile, P1 sent a 1MB file to all

phones. Finally (after 5 minutes), airplane mode was disabled on P2-P7 phones.

5. Experiment-E: This experiment was conducted with P6, P7, and P8 smart-

phones (that were connected via LTE to the PSCR system) with six test cases:670

TC1-TC6. In each test case, each phone sent a “hi” text message, 10KB, 200KB,

1MB, 1MB, and 10MB files to two other phones, respectively.

6. Experiment-F: This experiment aims to illustrate the interoperability of

our softwares into two different mission-critical deployable FENs and the delay-

tolerant routing capabilities of RSock. The two systems were physically sepa-675

rated by ∼100 m (i.e., the manpack system was indoor and the PSCR system

was outdoor). We used P8, P9, and P10 phones that were simultaneously con-

nected via LTE and Wi-Fi to the PSCR system as well as P4, P5, and P6 phones

that were connected via Wi-Fi to the manpack system. This experiment had

five test cases, as presented in Figure 9a. In TC1, while P6 is connected to the680

manpack system, P4 sent “hi” text message to P8, P9, and P10 phones. After 4

minutes, P6 moved to the PSCR system and stayed there for ∼100 seconds. In

TC2 (while P6 was connected to PSCR system), P8, P9, and P10 sent “hi” text

messages to P4, P5, and P6, respectively. In TC3, P6 moved to the manpack

system and stayed there for 10 minutes. During that, P4 sent “hi” text messages685

and a 10KB file to P8, P9, and P10, respectively. In TC4 and TC5, (after 10

minutes), P6 moved to the PSCR system.

7. Experiment-G: This experiment aims to illustrate the delay-tolerant rout-

ing capabilities of RSock when it runs between the PSCR system and an ad-hoc

31

edge network (ad-hoc-FEN), which is formed using Wi-Fi Direct of P5 and P4690

phones. That is, P5 was assigned the GO role and established a P2P group. P4

was connected to P5 as a client. For the PSCR system, we used P8, P9, and

P10 phones that were connected via Wi-Fi. The two systems were physically

separated by ∼100 m from each other (i.e., the ad-hoc-FEN system was indoor

and the PSCR system was outdoor). This experiment had six test cases as695

presented in Figure 9b.

In TC1, P8 sent a 10KB file to P9 and P10, respectively. In TC2, P8 sent a

50KB file to P9, P10, P4, and P5, respectively. After ∼7 minutes, P10 moved to

the ad-hoc-FEN system. In TC3, P4 sent a 10KB file to P5, P10, P8, and P9,

respectively. In TC4 (i.e., after ∼6 minutes), P10 moved to the PSCR system.700

Then (i.e., after P10 is connected), P8 sent a 200KB file to P9, P10, P5, and P4,

respectively. After that, a new smartphone, P6, joined as a mule and moved

between the ad-hoc-FEN, PSCR, and then back to the ad-hoc-FEN within ∼10

minutes. In TC5, P4 sent a 1MB file to P8, P9, and P10. Then, after ∼4

minutes, P6 moved back to the PSCR system. In TC6, P10 switched to LTE705

only connectivity to the PSCR system (i.e., instead of Wi-Fi) and sent a 1 MB

file to P6, P5, and P4, respectively. Finally. after ∼5 minutes P6 disconnected

from the PSCR system and connected back to the ad-hoc-FEN system.

5.1.1. Evaluation Results

In this section, we present the performance evaluations of RSock in terms710

of PDR, PDD, and overhead. PDR measures the amount of useful information

delivered to destinations within the deadlines, which indicates the routing pro-

tocols’ performance of finding efficient packet carriers within a time constraint.

The PDD of a packet is the time the packet has spent in the network before it

reaches its destination. The overhead is defined as:715

#relays−#delivered
#delivered .

#relays is the total number of transmissions (i.e., the total number of mes-

sage copies). #delivered is the total number of delivered messages (i.e., only

32

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

TC1 TC2 TC3 TC4 TC5 TC6

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(a)

 0

 100

 200

 300

 400

 500

 600

 700

TC1 TC2 TC3 TC4 TC5

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(b)

 0

 5

 10

 15

 20

 25

TC1 TC2 TC3 TC4 TC6

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(c)

 0

 100

 200

 300

 400

 500

 600

 700

TC2
* TC3

* TC4
* TC5 TC6

*

P
a

c
k
e

t
D

e
la

y
 (

s
)

Test Case #

(d)

Figure 11: Packet Delay for all test cases for: a) Experiment-E. b) Experiment-F. c & d)

Experiment-G.

the first copy that reaches the destination counts as delivered and the rest are

discarded).720

We also measure the control traffic ratio, defined as:

1 - size of payload
size of data packets+size of control packets .

Payload refers to application data; each data packet includes a header and

a payload; data packets may contain packet replicas; and control packets in-

clude packets for exchanging MVE parameters and probes. In the following725

paragraphs, we will discuss the evaluation of our experiments for the aforemen-

tioned metrics. The results in Figures 10 - 12 are averaged per each test case

with error bars showing standard deviation.

Evaluation in Fully Connected Mesh Network. Figures 10a and 10b

show the PDDs for all test cases of Experiment-A and Experiment-B in our730

33

 0

 0.025

 0.05

 0.075

 0.1

0.01 0.2 1 5 10 21

C
o
n
tr

o
l
T

ra
ff
ic

 R
a
ti
o

File Size (MB)

(a)

 0

 3

 6

 9

 12

 15

 18

F2 F3 G2 G4 G5 G6

O
v
e

rh
e

a
d

Experiemnt#TC#

(b)

Figure 12: a) Control Traffic Ratio for all files. b) Overhead of RSock for DTN Experiments.

manpack system, respectively. Moreover, Figure 11a shows the PDDs for all

test cases for Experiment-E in the PSCR system. Notice that the networks

during these experiments are fully connected. That is, there is no disconnection

or re-association of the smartphones’ Wi-Fi/LTE links. In these experiments,

we intend to show the routing capabilities of RSock in the manpack and PSCR735

systems for various smartphones and file sizes when the network is fully con-

nected. As is clear in Figures 10a and 10b, RSock is able to deliver all files with

different sizes (10KB to 21MB) over Wi-Fi and LTE links. The PDD increases

while the file size increases (e.g., over the Wi-Fi network of the manpack system,

the PDD ranges from ∼1 second up to ∼150 seconds for the files with 10KB to740

21MB sizes, respectively). The PDRs for all test cases of these experiments is

100%.

Evaluation in Diverse Network Conditions. Figure 10c shows the PDD

for all test cases of Experiment-C. This experiment demonstrates the resiliency

of RSock when the smartphones lose their connections during packet transmis-745

sions. That is, when smartphones re-associate their Wi-Fi and LTE connections

(might be with new IP address for the LTE connection). Notice that this kind of

connection disruption commonly occurs due to the mobility of the smartphones’

carriers in mission-critical deployable FENs. The PDD for all test cases is > 300

seconds (i.e., the time-period that the connections were lost). In addition to the750

300 seconds, the topology discovery manager of EdgeKeeper [24] requires some

34

time to learn the updated graph view of the network (i.e., once the smartphones

either connect/disconnect to the manpack system). The PDR for all test-cases

is 100%.

In Experiment-D, all test cases of Experiment-A and Experiment-C are com-755

bined with additional smartphones that use either Wi-Fi or LTE connections.

That is, seven smartphones were fully connected in TC1-TC4 and then discon-

nected (except P1), for 5 minutes in TC5. As shown in Figure 10d, RSock is able

to deliver all packets with 100% PDR and comparable PDDs (i.e., compared to

Experiment-A and Experiment-C in which we used three smartphones).760

Evaluation in DTN between the manpack and PSCR systems. TC1

in Figure 11b shows the PDD for the “hi” text message via the mule between the

manpack and PSCR systems in Experiment-F. Notice that, once the mule (i.e.,

P6 in our case) becomes physically close to a system, it automatically discovers

its Wi-Fi or LTE networks and re-associate with them. That is, P6 pre-stored765

their credentials, e.g., Wi-Fi passphrase of both systems and LTE configurations

of the PSCR system. In TC2 (while P6 is connected to the PSCR system) it

instantly received the “hi” text message that is sent from P8, P9, and P10.

Then P6 carried and delivered (i.e., after 100 seconds) P8, P9, and P10’s “hi”

text messages to P4 and P5 as presented in TC3 in Figure 11b. TC4 and TC5770

in Figure 11b show the PDD of the “hi” text messages and the 10KB files,

respectively, that are sent from P4 in the manpack systems and then (i.e., after

600 seconds) carried and delivered to P8, P9, and P10 via P6. The PDR of all

test cases of this experiment is 100%.

Evaluation in DTN between the ad-hoc-FEN and PSCR systems.775

TC1 and TC2 in Figure 11c present the PDDs for the 10KB and 50KB files that

were sent from P8 to both P9 and P10 in the PSCR system, respectively. TC2∗

in Figure 11d shows the PDD of the 50KB files that were sent from P8 in the

PSCR system and carried and delivered after (420 seconds) to P4 and P5 in the

ad-hoc-FEN system. Once the mule (i.e., P10) is connected to the ad-hoc-FEN780

system during TC3, it received along with P5 a 10KB file with the PDD that is

shown in TC3 in Figure 11c from P4. Then after ∼6 minutes, P10 carried and

35

delivered the 10KB file to P8 and P9 in the PSCR system, as shown in TC3∗ in

Figure 11d. The PDD of the 200KB file that is sent from P8 and delivered to P9

and P10 within ∼5 seconds is shown in TC4 in Figure 11c. The aforementioned785

file is then carried via the new mule, P6, to both P5 and P4 in the ad-hoc-FEN

system, as presented in TC4∗ in Figure 11d. TC5∗ in Figure 11d shows the

PDD of three 1MB files (this demonstrates the capability of RSock to deliver

relatively large files in DTN scenarios via the mule, P6). TC6∗ in Figure 11d

shows the PDD when another phone, P10, connected to the PSCR system sent790

a 1MB file, however; via LTE to P5 and P4 in the ad-hoc-FEN system. The file

is also carried and delivered via P6.

As for control traffic overhead, RSock has a ratio that ranges from 2.8% up to

6% for 0.01-21 MB files, as shown in Figure 12a. The overhead is resulted from

the additional header that RSock Library adds to the packets’ payloads to handle795

the fragmentation and the QoS parameters, as we presented in Section 3.4.

Similarly, the overhead of the DTN experiments that is presented in Figure 12b

is decreasing from TC2 to TC3 for Experiment-F. That is, after RSock daemons

in the manpack system’s smartphones discover the path (i.e., via P6) to the

PSCR system. The same decrease in the overhead is also observed from TC2 to800

TC4 as well as from TC5 to TC6 for Experiment-G for the two mules, P10 and

P6, respectively, as presented in Figure 12b.

5.2. Evaluation using a Wireless Testbed

We deployed RSock and EdgeKeeper daemons on 11 Asus Eee notebooks

that run Ubuntu 14.04 LTS. The wireless cards of the notebooks are set to805

operate in 2.4 GHz (channel 3) and in ad-hoc mode. Due to space limitation

and for the ease of testing, we place all notebooks together and emulate a

fully connected mission-critical deployable FENs by manipulating the firewall

configurations. To this end, we connected all the notebooks to a server through

Ethernet cables and issued iptable commands to enable/disable the links, as810

shown in Figure 13a.

We conducted two sets of experiments, i.e., in a fully connected FENs and

36

(a)

 v4 v5

 v6

 v11

 v8v7

v10

 v1

 v9

 v3v2

(b)

Figure 13: (a) Testbed for our experiments. (b) Network topology for the Wireless Testbed

(dashed green lines are for on-off experiments only).

a dynamic on-off FENs. For the fully connected FENs, we created three FENs

(with v9, v10, and v11 running as the EdgeKeeper master), as shown in Fig-

ure 13b. For each experiment, we generated a data flow with different data815

packets sizes (8 kB to 92 kB) within each FEN and we set the deadline of each

packet to 300 seconds. For on-off FENs, we used the same baseline topology as

shown in Figure 13b but turned each link on and off randomly with different

duty cycles (in order to create contact events between the nodes as it is the

case in mission-critical deployable FENs). The duration for one on-off cycle820

is set to 60 seconds. For the on-off FENs, we generated a data flow for dif-

ferent data packet sizes amongst the three FENs, as shown in Figure 13b. In

addition to RSock, we use OLSR [41], Epidemic [10], and Prophet [18] routing

protocols for comparison. We intend to show that: 1) OLSR, Epidemic, and

Prophet protocols perform poorly when they used outside their designed sce-825

nario; and 2) that RSock performs closely to the best protocol for each specific

scenario. For OLSR, Epidemic, and Prophet protocols, we leveraged olsrd and

IBR-DTN [17, 18, 33, 34] implementations. We repeated each experiment 30

times and we averaged these 30 runs per each experiment. The error bars in

the Figures 14, 15, and 16 show the standard deviations.830

For the fully connected FENs, the PDR for all packets is 100% for all pro-

tocols (i.e., RSock, OLSR, Epidemic, and Prophet). The packets delays and

control traffic ratios for the fully connected FENs are shown in Figure 14. As

37

 0

 200

 400

 600

 800

 1000

 1200

 8 12 16 20 24 28 32

D
e
la

y
 (

m
ill

is
e
c
o
n
d
s
)

Packet Size (kB)

Epidemic
RSock
OLSR

Prophet

(a)

 0

 1

 2

 3

 4

 5

 6

 64 68 72 76 80 84 88 92

D
e
la

y
 (

s
e
c
o
n
d
s
)

Packet Size (kB)

Epidemic
RSock
OLSR

Prophet

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 8 12 16 20 24 28 32

C
o
n
tr

o
l
T

ra
ff
ic

 R
a
ti
o

Packet Size (kB)

Epidemic
RSock
OLSR

Prophet

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 64 68 72 76 80 84 88 92

C
o
n
tr

o
l
T

ra
ff
ic

 R
a
ti
o

Packet Size (kB)

Epidemic
RSock
OLSR

Prophet

(d)

Figure 14: Packet Delay for the experiments on the fully connected FENs for: a) 8 kB to 32

kB packets sizes. b) 64 kB to 92 kB packets sizes. Control Traffic Ratio for the experiments

on the fully connected FENs for: c) 8 kB to 32 kB packets sizes. d) 64 kB to 92 kB packets

sizes.

shown in Figures 14a and 14b, RSock achieves comparable packets delays with

OLSR. The delays for RSock range from 49.42 ms up to 1623.58 ms. On the835

other hand, OLSR’s packets delivery delay is between 34.34 ms and 1547.80 ms.

For control traffic overhead, as shown in Figures 14c and 14d, RSock is higher

than OLSR and significantly smaller than Epidemic and Prophet. RSock has

control traffic ratios that range from 11% down to 2.6%, whereas OLSR ranges

from 4.40% down to 2.87%. The additional overhead for RSock is required840

in order to adapt to the network condition. However, as we will see later for

the on-off FENs, RSock ability to adapt to network condition leads to superior

performance in FENs with dynamic connectivity.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

P
D

R

On-Off Proportion

RSock
Epidemic
OLSR
Prophet

(a)

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

D
e
la

y
 (

s
e
c
o
n
d
s
)

On-Off Proportion

RSock
Epidemic
OLSR
Prophet

(b)

Figure 15: a) Packet Delivery Ratio for the on-off experiment. b) Packet Delay for the on-off

experiments.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 20 30 40 50 60 70 80 90 100

O
v
e
rh

e
a
d

On-Off Proportion

RSock
Epidemic
OLSR
Prophet

Figure 16: Overhead for the on-off experiments

Figure 15a shows the PDRs for the on-off FENs. RSock performs very

close to Epidemic and Prophet in terms of PDR under different on-proportions.845

When the on-proportion is 20%, Epidemic achieves PDR with 20.15%, Prophet

achieves PDR with 16.33%, whereas RSock’s PDR is 12.05%. That’s because

in extremely sparse connectivity FENs, Epidemic’s flooding strategy is efficient.

Moreover, both Epidemic and Prophet are specifically designed for sparsely

connected FENs. However, when the on-proportion ranges from 40% to 100%,850

RSock’s PDRs are within 4.17% difference compared to both Epidemic and

Prophet’s PDRs. Similar observations were obtained for the packet delays, as

presented in Figure 15b. When the on-proportion is 20%, Epidemic achieves

PDD with 284.45 seconds, Prophet achieves PDD with 294.23 seconds, whereas

RSock’s PDD is 297.01 seconds. When the on-proportion ranges from 40%855

39

to 100%, RSock’s PDDs are within 15.23 seconds difference compared to both

Epidemic and Prophet’s PDDs. However, RSock achieves the aforementioned

results with less overhead compared to Epidemic and Prophet when the on-

proportion is > 40% and > 60%, respectively, as is shown in Figure 16. On the

other hand, as OLSR is designed for the fully-connected networks (i.e., when860

the on-proportion is 100%), it achieves significantly lower PDR and significantly

higher PDD when the on-proportion is < 100% compared to RSock, Epidemic,

and Prophet, as shown in Figures 15a and 15b. Moreover, OLSR has zero

overhead (as shown in Figure 16) as it does not generate redundant traffic under

all on-off FENs scenarios (and hence it does not efficiently deliver the packets865

when the on-proportion is < 100% either).

6. State of the art

Routing protocols for networks with diverse connectivity. Many

routing protocols [10, 11, 12, 13, 14, 15, 16, 44, 45, 46, 47, 48, 49, 50] have been

proposed for DTN recently. In general, packet replication is adopted to improve870

routing performance [10] [11] [13]. In order to estimate the delivery capability of

individual nodes, social network analysis is accomplished to develop social-based

metrics [12] [14] [15] that can be leveraged to improve routing efficiency. On

the other hand, previous research [19] [51, 52, 53, 54, 55, 56, 57] have proposed

to integrate the connected networks and sparsely connected networks’ routing875

protocols via different approaches. The store-and-forward mechanism that is

leveraged by DTN’ routing protocols is the major difference compared to the

routing protocols that are designed for the well-connected mobile ad-hoc or mesh

networks. One simple approach is to integrate the store-and-forward mechanism

to mobile ad-hoc or mesh routing protocols [53] [54] [56]. That is to store the880

packet when the next-hop/destination is unavailable, and forward it when it is

available. The aforementioned approach might be suitable for specified network

conditions. However, due to its inability to select appropriate packet carriers

in disconnected networks and the limitation of using the single copy routing

40

degrade its performance in many scenarios.885

Other approaches [51] [52] [55] [57] aim to switch between mobile ad-hoc and

mesh routing protocols. That is, to enable the source node to pick a specific

routing protocol based on some conditions. In [51], the network is partitioned

into multiple diameter-constrained sub-networks in which mobile ad-hoc rout-

ing protocols are used for intra-sub-network routing and DTN routing protocols890

are used for inter-sub-network routing. In [55], the source node decides which

protocol to use based on some collected information (e.g., packet size, node

density, etc.). For example, if the nodes are moving fast, the network is sparse,

and/or the message size is large, a DTN routing protocol is used. Else, a mobile

ad-hoc routing protocol is used. The aforementioned approaches have many895

limitations. For example, once the decision is made at the source [55], the inter-

mediate nodes cannot change it even though they might have more up-to-date

information. In [51], the border line that distinguishes DTN and ad-hoc/mesh

networks is not defined, which makes it difficult to select an appropriate switch-

ing point.900

In R3 [19], the relationship between replication benefit and the path de-

lay predictability was observed. Based on the analytical model for replication,

R3 protocol aims to dynamically replicate packets according to the network

condition. That is, the nodes keep probing the network to collect path delay

distributions and then the shortest path (in terms of delay) is selected first. The905

source node adds additional paths (i.e., to the packet header for source routing)

if the replication gain is greater than a certain threshold. Inspired by R3, our

work delves deeper into understanding replication. We find that the correlation

of path delays can significantly reduce the benefit gained from packet replication

and propose a novel model for capturing the potential correlation of ICT910

Software Defined Networks (SDN)-based FENs enabled IoT ser-

vices. In many recent research publications, SDN approaches have been em-

ployed in FENs in order to enhance their network performance [58, 59, 60, 61].

In [58], an architecture that combines SDN and Fog computing is proposed.

That is, an SDN controller that is responsible for resource management and or-915

41

chestration is deployed between the fog and cloud layers. Gupta et al. illustrated

the effectiveness of SDN and Network Function Virtualization technologies for

FENs over a health smart-home use case scenario and proposed SDFog [59], an

SDN-based fog computing system to perform QoS-aware management amongst

different FENs services’ flows. Sun et al. proposed EdgeIoT [60], a fog-to-cloud920

hierarchical structure to effectively handle the data produced by IoT devices.

In their design, the SDN-based cellular core is located at top of fog servers and

is responsible for data forwarding amongst fog servers. Zeng et al. proposed

an SDN load balancing scheme [61] for FENs in order to effectively leverage

network resources. They proposed an effective task scheduling and resource925

management system to satisfy user experiences. They formulated the prob-

lem as mixed-integer nonlinear programming problem with three constraints:

transmission time, I/O time, and computation time. Their evaluation results

show the efficiency of their approach in minimizing FENs task completion time.

Even though the aforementioned SDN approaches are able to enhance the net-930

work performance, they require a network administrator that is always available

to apply different rules/configurations according to different scenarios, which

might be tedious in disaster-response events. Moreover, the aforementioned

approaches have been mainly evaluated via simulations without a reliable full-

system implementation that can be deployed into real-world systems.935

Jin et al. [62] proposed an optimization formulation for the Virtual Network

Function (VNF) chain deployment problem that minimizes the resource con-

sumption of both edge servers and physical links under the latency limitations.

That is, by taking the queuing delay at the APs into account for meeting the

latency requirements. They formulated the VNF chain deployment problem as940

a mixed integer linear programming (MILP) to minimize the total resource con-

sumption and evaluated it via Extensive simulations based on real-world topolo-

gies. Similarly, Gao et al. [63] studied the problem of jointly optimizing the

access network selection and service placement for Mobile Edge Cloud (MEC),

towards the goal of improving the QoS by balancing the access, switching and945

communication delay. Specifically, they first design an efficient online frame-

42

work to decompose the long-term optimization problem into a series of one-shot

problems. They proposed an iteration-based algorithm to derive a computation

efficient solution and validated the efficacy of their proposed solution by both

rigorous theoretical analysis and extensive trace-driven simulations.950

7. Conclusions

We present Resilient Socket (RSock), a novel identity-based routing protocol

for mission-critical deployable FENs that exhibits diverse connectivity charac-

teristics. RSock is able to adjust its routing and replication decisions to deal

with any dynamic mission-critical deployable FENs environments. That is, by955

leveraging EdgeKeeper [24], a novel coordination and naming service for FENs,

to accomplish the identity-based routing and to exploit all wireless interfaces of

FENs devices. We carefully design RSock to guarantee the ease of its deploy-

ment in Android and Linux platforms and to be leveraged and adopted (i.e.,

with minimal code changes) by modern/future mission-critical deployable FENs’960

applications. Furthermore, to facilitate its future enhancement for new require-

ments. We provide a reliable full-system implantation of RSock and extensively

evaluate it in two real-world systems in diverse real-world disaster-response sce-

narios to illustrate its routing capabilities.

Acknowledgment965

This material is based upon a work supported by National Institute of Stan-

dards and Technology (NIST) under grant NO. (#70NANB17H190). We ap-

preciate the helpful comments and suggestions from the reviewers.

References970

[1] Distressnet-ng project. http://distressnet.net/.

43

[2] C. Yang, R. Stoleru, Hybrid routing in wireless networks with diverse con-

nectivity, in: Proceedings of the 17th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, 2016, pp. 71–80.

[3] Winter institute workshops. https://itec.tamu.edu/winter-institute-2018/.975

[4] The android team awareness kit. https://takmaps.com.

[5] K. Usbeck, M. Gillen, J. Loyall, A. Gronosky, J. Sterling, R. Kohler,

K. Hanlon, A. Scally, R. Newkirk, D. Canestrare, Improving situation

awareness with the Android Team Awareness Kit (ATAK), in: Sensors, and

Command, Control, Communications, and Intelligence (C3I) Technologies980

for Homeland Security, Defense, and Law Enforcement, Vol. 9456, 2015,

pp. 172 – 193.

[6] C. Chen, M. Won, R. Stoleru, G. G. Xie, Energy-efficient fault-tolerant

data storage and processing in mobile cloud, IEEE Transactions on Cloud

Computing 3 (1) (2015) 28–41.985

[7] M. Sagor, R. Stoleru, S. Bhunia, M. Chao, A. Haroon, A. Altaweel, M. Mau-

rice, R. Blalock, R-drive: Resilient data storage and sharing for mobile edge

computing systems, arXiv (2022). doi:10.48550/ARXIV.2204.10823.

[8] R-drive for distressnet-ng. https://github.tamu.edu/lenss/rsockimageshare.

[9] Mdfs: Mobile distributed file system for fog/edge networks.990

https://github.tamu.edu/lenss/mdfs ng.

[10] M. J. F. Alenazi, Y. Cheng, D. Zhang, J. P. G. Sterbenz, Epidemic routing

protocol implementation in ns-3, in: Proceedings of the 2015 Workshop on

Ns-3, 2015, p. 83–90.

[11] T. Spyropoulos, K. Psounis, C. S. Raghavendra, Spray and wait: An ef-995

ficient routing scheme for intermittently connected mobile networks, in:

Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant

Networking, WDTN ’05, 2005, pp. 252–259.

44

https://doi.org/10.48550/ARXIV.2204.10823

[12] E. M. Daly, M. Haahr, Social network analysis for routing in disconnected

delay-tolerant manets, in: Proceedings of the 8th ACM international sym-1000

posium on Mobile ad hoc networking and computing, 2007, pp. 32–40.

[13] A. Balasubramanian, B. Levine, A. Venkataramani, Dtn routing as a re-

source allocation problem, in: Proceedings of the 2007 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Computer Com-

munications, SIGCOMM ’07, 2007, pp. 373–384.1005

[14] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: Social-based forwarding in

delay-tolerant networks, IEEE transactions on mobile computing 10 (11)

(2010) 1576–1589.

[15] W. Gao, Q. Li, B. Zhao, G. Cao, Multicasting in delay tolerant networks: A

social network perspective, in: Proceedings of the Tenth ACM International1010

Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’09,

2009, pp. 299–308.

[16] E. Bulut, S. C. Geyik, B. K. Szymanski, Utilizing correlated node mobility

for efficient dtn routing, Pervasive Mob. Comput. 13 (2014) 150–163.

[17] Implementation of optimized link state routing protocols for mobile ad-hoc1015

networks. https://github.com/olsr/olsrd.

[18] A. Lindgren, A. Doria, E. Davies, S. Grasic, Probabilistic routing protocol

for intermittently connected networks. irtf rfc 6693 (2012).

[19] X. Tie, A. Venkataramani, A. Balasubramanian, R3: Robust replication

routing in wireless networks with diverse connectivity characteristics, in:1020

Proceedings of the 17th Annual International Conference on Mobile Com-

puting and Networking, MobiCom ’11, 2011, pp. 181–192.

[20] Z. Li, H. Shen, A qos-oriented distributed routing protocol for hybrid wire-

less networks, IEEE Transactions on Mobile Computing 13 (3) (2014) 693–

708.1025

45

[21] W. A. Jabbar, W. K. Saad, M. Ismail, Meqsa-olsrv2: A multicriteria-based

hybrid multipath protocol for energy-efficient and qos-aware data routing

in manet-wsn convergence scenarios of iot, IEEE Access 6 (2018) 76546–

76572.

[22] I. Kacem, B. Sait, S. Mekhilef, N. Sabeur, A new routing approach for1030

mobile ad hoc systems based on fuzzy petri nets and ant system, IEEE

Access 6 (2018) 65705–65720.

[23] A. Keränen, J. Ott, T. Kärkkäinen, The one simulator for dtn protocol eval-

uation, in: Proceedings of the 2nd international conference on simulation

tools and techniques, 2009, pp. 1–10.1035

[24] S. Bhunia, R. Stoleru, M. Sagor, A. Haroon, A. Altaweel, M. Chao, M. Mau-

rice, R. Blalock, Edgekeeper: Resilient and lightweight coordination for mo-

bile edge computing systems, arXiv (2022). doi:10.48550/ARXIV.2204.

11095.

[25] Edgekeeper for distressnet-ng. https://github.tamu.edu/lenss/gns.1040

[26] M. Chiang, T. Zhang, Fog and iot: An overview of research opportunities,

IEEE Internet of Things Journal 3 (6) (2016) 854–864.

[27] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role

in the internet of things, in: Proceedings of the first edition of the MCC

workshop on Mobile cloud computing, 2012, pp. 13–16.1045

[28] L. M. Vaquero, L. Rodero-Merino, Finding your way in the fog: Towards

a comprehensive definition of fog computing, ACM SIGCOMM computer

communication Review 44 (5) (2014) 27–32.

[29] A. Altaweel, R. Stoleru, G. Gu, Evildirect: A new wi-fi direct hijacking at-

tack and countermeasures, in: 26th International Conference on Computer1050

Communication and Networks (ICCCN), 2017, pp. 1–11.

46

https://doi.org/10.48550/ARXIV.2204.11095
https://doi.org/10.48550/ARXIV.2204.11095
https://doi.org/10.48550/ARXIV.2204.11095

[30] Public safety communications research division.

https://www.nist.gov/ctl/pscr.

[31] Nextepc project. https://nextepc.org/.

[32] Cisco visual networking index: Global mobile data traffic forecast update,1055

2017-2020. https://www.cisco.com/ (2019).

[33] S. Schildt, J. Morgenroth, W.-B. Pöttner, L. Wolf, Ibr-dtn: A lightweight,

modular and highly portable bundle protocol implementation, ECEASST

37 (01 2011).

[34] Ibr-dtn - a modular and lightweight implementation of the bundle protocol.1060

https://github.com/ibrdtn/ibrdtn.

[35] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, S. Shenker,

Low latency via redundancy, in: Proceedings of the Ninth ACM Confer-

ence on Emerging Networking Experiments and Technologies, CoNEXT

’13, 2013, pp. 283–294.1065

[36] A. W. Marshall, I. Olkin, A multivariate exponential distribution, Journal

of the American Statistical Association 62 (317) (1967) pp. 30–44.

[37] B. C. Arnold, Parameter estimation for a multivariate exponential distri-

bution, Journal of the American Statistical Association 63 (323) (1968) pp.

848–852.1070

[38] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani, Algorithmic Game

Theory, 2007.

[39] J. Y. Yen, Finding the k shortest loopless paths in a network, Management

Science 17 (11) (1971) 712–716.

[40] Rsock implementation. https://github.tamu.edu/lenss/.1075

[41] T. H. Clausen, C. Dearlove, P. Jacquet, U. Herberg, The optimized link

state routing protocol version 2. ietf rfc 7181 (2014).

47

[42] Android ndk toolchain. https://developer.android.com/ndk.

[43] Android debug bridge (adb). https://developer.android.com/studio

/command-line/adb.1080

[44] N. Srinidhi, C. Sagar, J. Shreyas, D. K. SM, An improved prophet-random

forest based optimized multi-copy routing for opportunistic iot networks,

Internet of Things 11 (2020).

[45] M. W. Kang, D. Y. Seo, Y. W. Chung, An efficient opportunistic routing

protocol for icn, ICN’19.1085

[46] Y. Mao, C. Zhou, Y. Ling, J. Lloret, An optimized probabilistic delay

tolerant network (dtn) routing protocol based on scheduling mechanism

for internet of things (iot), Sensors 19 (2) (2019) 243.

[47] K. M. Baek, D. Y. Seo, Y. W. Chung, An improved opportunistic routing

protocol based on context information of mobile nodes, Applied Sciences1090

8 (8) (2018).

[48] D. K. Sharma, S. K. Dhurandher, I. Woungang, R. K. Srivastava, A. Mo-

hananey, J. J. P. C. Rodrigues, A machine learning-based protocol for ef-

ficient routing in opportunistic networks, IEEE Systems Journal 12 (3)

(2018) 2207–2213.1095

[49] S. Basu, A. Biswas, S. Roy, S. DasBit, Wise-prophet: a watchdog super-

vised prophet for reliable dissemination of post disaster situational infor-

mation over smartphone based dtn, Journal of Network and Computer

Applications 109 (2018) 11–23.

[50] S. J. Borah, S. K. Dhurandher, S. Tibarewala, I. Woungang, M. S. Obaidat,1100

Energy-efficient prophet-prowait-edr protocols for opportunistic networks,

GLOBECOM’17.

[51] J. Whitbeck, V. Conan, HYMAD: Hybrid DTN-MANET routing for dense

and highly dynamic wireless networks, Comput. Commun. 33 (13) (2010)

1483–1492.1105

48

[52] Z. Lu, G. Cao, T. L. Porta, Networking smartphones for disaster recov-

ery, in: 2016 IEEE International Conference on Pervasive Computing and

Communications (PerCom), 2016, pp. 1–9.

[53] M. Demmer, K. Fall, Dtlsr: Delay tolerant routing for developing regions,

in: Proceedings of the 2007 Workshop on Networked Systems for Develop-1110

ing Regions, NSDR ’07, 2007, pp. 5:1–5:6.

[54] C. Raffelsberger, H. Hellwagner, A hybrid manet-dtn routing scheme for

emergency response scenarios, 2013 IEEE International Conference on

Pervasive Computing and Communications Workshops (PERCOM Work-

shops) (2013) 505–510.1115

[55] J. Lakkakorpi, M. Pitkänen, J. Ott, Adaptive routing in mobile opportunis-

tic networks, in: Proceedings of the 13th ACM International Conference

on Modeling, Analysis, and Simulation of Wireless and Mobile Systems,

MSWIM ’10, 2010, pp. 101–109.

[56] L. Delosières, S. Nadjm-Tehrani, Batman store-and-forward: The best of1120

the two worlds, in: 2012 IEEE International Conference on Pervasive Com-

puting and Communications Workshops, 2012, pp. 721–727.

[57] C. Kretschmer, S. Ruhrup, C. Schindelhauer, Dt-dymo: Delay-tolerant dy-

namic manet on-demand routing, in: 2009 29th IEEE International Con-

ference on Distributed Computing Systems Workshops, 2009, pp. 493–498.1125

[58] N. B. Truong, G. M. Lee, Y. Ghamri-Doudane, Software defined

networking-based vehicular adhoc network with fog computing, in:

IFIP/IEEE International Symposium on Integrated Network Management

(IM), 2015.

[59] H. Gupta, S. B. Nath, S. Chakraborty, S. K. Ghosh, Sdfog: A software1130

defined computing architecture for qos aware service orchestration over

edge devices, arXiv preprint arXiv:1609.01190 (2016).

49

[60] X. Sun, N. Ansari, Edgeiot: Mobile edge computing for the internet of

things, IEEE Communications Magazine 54 (12) (2016) 22–29.

[61] D. Zeng, L. Gu, S. Guo, Z. Cheng, S. Yu, Joint optimization of task schedul-1135

ing and image placement in fog computing supported software-defined em-

bedded system, IEEE Transactions on Computers 65 (12) (2016) 3702–

3712.

[62] P. Jin, X. Fei, Q. Zhang, F. Liu, B. Li, Latency-aware vnf chain deployment

with efficient resource reuse at network edge, in: IEEE INFOCOM 2020-1140

IEEE Conference on Computer Communications, 2020, pp. 267–276.

[63] B. Gao, Z. Zhou, F. Liu, F. Xu, Winning at the starting line: Joint network

selection and service placement for mobile edge computing, in: IEEE IN-

FOCOM 2019-IEEE Conference on Computer Communications, 2019, pp.

1459–1467.1145

50

	Introduction
	Background and Motivation
	Fog/Edge Networks (FENs)
	System Model
	Motivation: Why RSock?

	Resilient Socket
	Preliminaries
	Basic Idea
	How to decide replication factors?
	RSock Design
	Application-layer Packets Mux/Demux Module
	Replication Factor Decision
	Packet Forwarding Module

	Implementation and Lessons Learned
	RSock Evaluation
	Evaluation during the Winter Institute Exercise
	Evaluation Results

	Evaluation using a Wireless Testbed

	State of the art
	Conclusions

