
DistressNet-NG: A Resilient Data Storage and Sharing Framework for Mobile
Edge Computing in Cyber-Physical Systems

MOHAMMAD SAGOR, AMRAN HAROON, and RADU STOLERU, Department of Computer Science

and Engineering, Texas A&M University, USA

SUMAN BHUNIA, Department of Computer Science and Software Engineering, Miami University, USA

ALA ALTAWEEL, Department of Computer Engineering, University of Sharjah, UAE

MENGYUAN CHAO and LIUYI JIN, Department of Computer Science and Engineering, Texas A&M University,

USA

MAXWELL MAURICE and ROGER BLALOCK, National Institute of Standards and Technology (NIST), USA

Mobile Edge Computing (MEC) has been gaining a major interest for use in Cyber-Physical Systems (CPS) for Disaster Response

and Tactical applications. These CPS generate a very large amount of mission-critical and personal data that require resilient and

secure storage and sharing. In this article, we present the design, implementation, and evaluation of a framework for resilient data

storage and sharing for MEC in CPS targeting the aforementioned applications. Our framework is built on the resiliency of three

main components: EdgeKeeper, which ensures resilient coordination of the framework’s components; RSock, which provides resilient

communication among CPS’s nodes; and R-Drive/R-Share which, leveraging EdgeKeeper and RSock, provides resilient data storage and

sharing. EdgeKeeper employs a set of replicas and a consensus protocol for storing critical meta-data and ensuring fast reorganization

of the CPS; RSock decides an optimal degree for replicating data that is communicated over lossy links. R-Drive employs an adaptive

erasure-coded and encrypted resilient data storage; R-Share, leveraging RSock provides resilient peer-to-peer data sharing. We

implemented our proposed framework on rapidly deployable systems (e.g. manpacks, testMobile Edge Clouds) and on Android devices,

and integrated it with existing MEC applications. Performance evaluation results from three real-world deployments show that our

framework provides resilient data storage and sharing in MEC for CPS.

ACM Reference Format:
Mohammad Sagor, Amran Haroon, Radu Stoleru, Suman Bhunia, Ala Altaweel, Mengyuan Chao, Liuyi Jin, Maxwell Maurice, and Roger

Blalock. 2023. DistressNet-NG: A Resilient Data Storage and Sharing Framework for Mobile Edge Computing in Cyber-Physical

Systems. 1, 1 (December 2023), 30 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Cyber Physical Systems (CPS) are being deployed in Disaster Response and Tactical environments to improve situational

awareness, coordination, and decision-making in high-stress situations. As shown in Figure 1, CPS designed for disaster

Authors’ addresses: Mohammad Sagor, msagor@tamu.edu; Amran Haroon, amran.haroon@tamu.edu; Radu Stoleru, stoleru@cse.tamu.edu, Department

of Computer Science and Engineering, Texas A&M University, College Station, TX, USA; Suman Bhunia, bhunias@miamioh.edu, Department of Computer

Science and Software Engineering, Miami University, Oxford, OH, USA; Ala Altaweel, aaltaweel@sharjah.ac.ae, Department of Computer Engineering,

University of Sharjah, Sharjah, UAE; Mengyuan Chao, chaomengyuan@tamu.edu; Liuyi Jin, liuyi@tamu.edu, Department of Computer Science and

Engineering, Texas A&M University, College Station, TX, USA; Maxwell Maurice, maxwell.maurice@nist.gov; Roger Blalock, roger.blalock@nist.gov,

National Institute of Standards and Technology (NIST), Boulder, CO, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-5358-5274
HTTPS://ORCID.ORG/0009-0002-3902-8636
HTTPS://ORCID.ORG/0000-0003-3976-4502
HTTPS://ORCID.ORG/0000-0003-3587-3509
HTTPS://ORCID.ORG/0000-0002-0451-7758
HTTPS://ORCID.ORG/0000-0002-1516-0280
HTTPS://ORCID.ORG/0000-0003-0115-184X
HTTPS://ORCID.ORG/0000-0002-8254-5738
HTTPS://ORCID.ORG/0000-0003-3032-1158
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-5358-5274
https://orcid.org/0009-0002-3902-8636
https://orcid.org/0000-0003-3976-4502
https://orcid.org/0000-0003-3587-3509
https://orcid.org/0000-0002-0451-7758
https://orcid.org/0000-0002-1516-0280
https://orcid.org/0000-0003-0115-184X
https://orcid.org/0000-0002-8254-5738
https://orcid.org/0000-0003-3032-1158

2 Sagor, et al.

response, can be used to monitor, collect data, process the data, and provide analytics to disaster responders in Search and

Rescue or Firefighting missions. By using sensors, drones, and other technologies, CPS can help emergency responders

locate survivors, assess the damage, and coordinate resources. For example, CPS can help monitor the condition of

bridges, roads, and other infrastructures to ensure their safety and functionality. In Tactical Environments, CPS can

be used in military or law enforcement settings to improve situational awareness, decision-making, and coordination.

For example, CPS can be used to monitor the movements of enemy forces, track the location of friendly forces, and

coordinate the deployment of resources. CPS can also be used to detect and respond to threats such as chemical

or biological attacks. However, it is important to ensure that these systems are reliable and secure to prevent any

potential failures or cybersecurity risks. One important aspect of the reliability of such CPS is the resilient data storage

and sharing, by adaptively storing data, when considering devices’ reliability, device mobility, and the locations for

computation functions (i.e., analytics).

AR Helmet

Smart
Watch

Embedded
Sensors

Search & Rescue Fire Fighting

Rapidly Deployables

OnBody
Camera

Manpack,
WiFi, LTE,
CPU

Mobile
Device

Storage

Data

Analytics

Fig. 1. Cyber-Physical Systems (CPS) collecting and processing essential data for first responders deployed in Search and Rescue or
firefighting missions. Disaster Responder’s equipment consists of a set of mobile devices (AR helmet, on-body/on-drone cameras,
embedded sensors, mobile phones) [34]. Rapidly deployable units enable communication, sharing of data, and the results of computa-
tion (i.e., “analytics” in the figure).

Mobile Edge Computing (MEC) has been gaining significant interest for CPS deployed in Disaster Response and

Tactical applications. As shown in Figure 2, several spatially close mobile edge devices form an edge cluster under

effective coordination [11]. Within a cluster, each mobile device is a service node that can appropriately share its

underutilized resources (e.g., mobile CPU/GPU, communication, memory) while providing its application services.

Those devices are typically connected to an HPC (High-Performance Computing) node that manages communications

(e.g., LTE, WiFi, WiFi Direct), allocates IPs, or provides DNS and device naming services. Data can be offloaded to

HPC and other connected devices for processing and storage. As shown in Figure 2, two MECs (where nodes “HPC-1”

and “M-6” serve as master nodes for edges 1 and 2, respectively) can provide cloud-like services intra-edge as well as

inter-edge.

On-body cameras and other sensors, gesture recognition devices, as well as MEC applications on mobile devices

generate large amounts of mission-critical data that needs to be stored in a resilient manner and shared seamlessly among

responders [37]. Existing commercial data storage services, e.g., Dropbox [18], Google Drive [22], OneDrive [33], etc. are

not designed for MEC and cannot operate in the absence of connectivity to the Internet/cloud. Although these services

allow users to store and modify data offline, the data is simply stored locally making it prone to data unavailability/loss

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 3

HPC-1

M2
M3 M5

M7

Internet/Cloud
Data Storage

/ Sharing

Cloud Server

Data Storage
/ Sharing

Intermittent or
no connection

LTE / WiFi

LTE

M1

M6

M4

MEC-1
MEC-2

Data Sharing

MEC = Mobile Edge Cloud
HPC = High Performance Computing
M1-M7 = Mobile Devices

Fig. 2. MEC architecture, where mobile devices form two Mobile Edge Cloud (MEC) networks MEC-1 (with HPC infrastructure) and
MEC-2 (ad-hoc), and share resources among themselves, or with the cloud

due to device failure by energy depletion or disconnection. Also, existing storage applications can only share data

through the cloud via infrastructure networks. Users may employ data-sharing applications that make use of ad-hoc

network connectivity (e.g., Bluetooth, WiFi Direct), but disconnections may occur during data-sharing sessions. Thus,

users may be required to minimize movement and stay connected until the data-sharing session completes, which is

impractical for search and rescue scenarios.

Users can use file-sharing applications (Google Files [23], SHAREit [31] etc.) that do not require cloud connectivity

and can operate over ad-hoc networks such as WiFi Direct, Bluetooth, NFC, etc. But, ad-hoc networks rely on short-

range communication and constant connectivity. During large-scale search and rescue operations, team members are

divided into groups and multiple groups are deployed at disjoint geographical locations, so it will be impractical for

team members to sacrifice their mobility and stay within each others network range for the sake to exchanging data.

Consequently, MEC platforms for disaster response should support network opportunistic data sharing over multiple

hops.

To address the mentioned limitations, we present DistressNet-NG, a framework for resilient data storage and sharing

for MEC in Disaster Response and Tactical CPS. The DistressNet-NG software and hardware ecosystem has been

developed and field tested for the purpose of aiding search and rescue operations for disaster response. This research is

an extension of preliminary conference versions appearing in the Proceedings of the IEEE 19th International Conference

on Mobile Ad Hoc and Smart Systems (MASS’22) [11] [39] [3], with the following contributions:

• R-Drive, a resilient data storage framework for MEC in CPS. R-Drive employs a novel adaptive erase coding

technique that is implemented and deployed on real systems, validating its suitability. R-Drive’s resilience is

supported by its integration with a resilient edge coordination service (EdgeKeeper) and a resilient communication

framework for dynamic, disconnected MEC environments (RSock).

• R-Share, a resilient message and file sharing framework for MEC in CPS. R-Share’s resilience is supported by its

integration with a resilient edge coordination service (EdgeKeeper) and a resilient communication framework

for dynamic, disconnected MEC environments (RSock).

• The implementation, integration and real-world deployments of DistressNet-NG (i.e., R-Drive, R-Share,

EdgeKeeper, and RSock). We present performance evaluation of both indoor and outdoor experiments with

different hardware configurations in variable network conditions to demonstrate resiliency of data storage and

sharing.

Manuscript submitted to ACM

4 Sagor, et al.

The rest of the article is structured as follows. In Section 2, we present state-of-the-art research and commercial

solutions for data storage and sharing. In Section 3, we present the design of DistressNet-NG components for resilient

data and sharing (R-Drive and R-Share), and their integration with EdgeKeeper and RSock. In Section 4, we present

details about the hardware and software implementations for DistressNet-NG components, while in Section 5 we

present the performance evaluations from real system implementations and deployments. We conclude in Section 6

with a summary of contributions and ideas for future work.

2 STATE OF THE ART

Applications in MEC platforms for disaster response generate gigabytes of mission-critical and personal data that

require resilient and secure storage. Often, for further processing, critical data is distributed among devices that are

prone to frequent disconnections and failures. This raw and processed data needs to be readily available to the MEC

devices for a seamless rescue/tactical operation. Commercial storage solutions (e.g, Dropbox, Google Drive, OneDrive)

store the data only on a device’s local storage when the device is disconnected from the cloud, hence when device

storage runs out, these services become inoperational, despite other devices in same network having large amounts of

available storage.

Data sharing is equally important for MEC. Applications like Google Files and SHAREit, allow users share files over

ad-hoc networks (WiFi Direct, Bluetooth, NFC). Ad-hoc networks, however, rely on short-range communication and

constant connectivity, making them impractical for first-response or tactical environments, characterized by highly

dynamic mobility. During large scale search and rescue operations, team members are mobile and scattered across

large areas; it may not always be possible for two team members to stay within each other’s communication range

to exchange data. For instance, two team members may not be directly connected yet reachable via one or many

intermediate mediums/people that frequently travel back and forth between them. Consequently, MEC platforms

for disaster response should support network opportunistic data sharing over multiple hops.Moreover, during disaster

response operations, first responders are divided into groups to perform their respective tasks. Team members often

need to share mission critical data among themselves to co-ordinate their tasks. Existing data sharing services cannot

sync directories across devices in absence of cloud connectivity. Consequently, first responder teams need to have a

common namespace to manage data and permissions that does not rely on cloud connectivity. Table 1 summarizes the

limitations of existing storage and sharing solutions that make them impractical for MEC environments.

Distributed Offline Opportunistic Cloudless
Data Storage Data Share Namespace Sync

Dropbox ✕ ✕ ✕

OneDrive ✕ ✕ ✕

Google Drive ✕ ✕ ✕

Google Files ✕ ✕ ✕

SHAREit ✕ ✕ ✕

R-Drive ✓✓✓ ✓✓✓ ✓✓✓

Table 1. Existing data storage and sharing services cannot fulfill edge requirements

Other solutions that target resilient data storage primarily in the cloud do not apply to MEC. OFS [35], HDFS [45]

and GFS [20] are too heavy-weight either for storage overhead, memory footprint, or computation overhead. MEFS [41]

does not work in absence of the cloud. PFS [19], FogFS [36] rely on specific mobility models that may be impractical for

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 5

R-Drive / R-Share

L
o

c
a

l
S

t
o

r
a

g
e

Survey123

Directory
Service File Handler Cipher Adaptive

Erasure Coding
Command
Handler

MADOOP MStorm CLI

Identity &
Service

Discovery

Metadata
Storage

Edge Mgmt.
& Health

Regret
Min. Alg.

Packet
Forward

Rep. Factor
Decision

API

Coordination Communication

Data

App Data

Data/
Fragment

Metadata

HPC / Mobile

EdgeKeeper RSock

Metadata

Fig. 3. R-Drive/R-Share: components and their integration with the DistressNet-NG software ecosystem, including EdgeKeeper,
RSock, and MEC applications for disaster response: MStorm [13], Survey123 [7] among others.

MEC that is disconnected from the cloud for long periods of time. Hyrax [32] ports HDFS to Android but shows poor

performance for CPU-bound tasks. While MDFS [14, 15], the earlier version of R-Drive, is designed for long periods

of disconnection in MEC, its implementation is based on a purely connected network, thus, not easily applicable to

real-world MEC.

Reed–Solomon erasure coding [38] is a widely used coding scheme to correct burst errors associated with media

failures in mass storage systems. When employing erasure coding for data storage, two parameters (𝑛 and 𝑘) need

to be specified. A high 𝑛 and low 𝑘 increase data availability at the cost of higher storage, and vice-versa. We note

that (𝑛, 𝑘) should be decided dynamically depending on resource availability in MEC and on the user’s preference for

quality of service (QoS). HDFS and GFS use erasure coding for distributed storage, but the choice of parameters for

erasure coding (𝑛, 𝑘) is fixed. MDFS does not provide an online algorithm to select 𝑛 and 𝑘 values for variable storage

availability and file sizes. Zhu et al. [49] presented an online adaptive code rate selection algorithm for cloud storage

that considers real-time user demands optimum (𝑛, 𝑘). However, this solution assumes that all candidate storage devices

have enough storage capabilities. HACFS [46] implements an extension to HDFS to adaptively choose between two

(fast and compact code) coding schemes but their solution involves fixed coding parameters for each of the coding

schemes. Other researchers [44, 48] also proposed solutions for erasure coding-based data storage, yet they do not

address how to choose 𝑛 and 𝑘 dynamically.

The main technical challenge that the aforementioned solutions face when considering resilient data storage and

sharing is that it is not clear how to embed “resiliency” into a complete MEC for CPS. Individual components that were

designed with resiliency in mind do not automatically (and equally important optimally) integrate well together. In this

manuscript we propose an integrated design and implementation of a complete solution. To the best of our knowledge,

no solution exists that is end-to-end/complete (i.e., takes into account all aspects of resiliency, e.g., coordination, and

communication) and that provides resilient data storage and sharing in MEC for highly dynamic environments (such as

disaster response or tactical), where device failures/disconnections are frequent.

3 DISTRESSNET-NG FRAMEWORK DESIGN

DistressNet-NG [3, 11, 13, 16, 24] is a next-generation MEC system for disaster response. It provides cloud-like functions

(e.g., resilient data storage, real-time stream processing and batch processing) to MEC applications.

The software architecture for the DistressNet-NG’s components that provide resilient data storage and sharing

(R-Drive and R-Share) is shown in Figure 3.

Manuscript submitted to ACM

6 Sagor, et al.

Two important components of the DistressNet-NG architecture are EdgeKeeper and RSock (Resilient Sockets).

EdgeKeeper [11] ensures coordination among all the devices in the edge network in a distributed manner and provides

services like identity and naming, authentication, service discovery, metadata storage, and edge status monitoring.

RSock [3] is a resilient transport protocol designed for sparsely connected network environments aiming to make

efficient use of available network bandwidth and to ensure timely data delivery. RSock performs multipath packet

routing over available network interfaces such as LTE, WiFi-Direct, and WiFi.

DistressNet-NG also implements data processing frameworks (not presented in this article): a) a real-time stream

processing, through MStorm [13], similar to what Apache Storm [6] provides in the cloud; and b) batch processing,

though MADOOP, similar to Apache’s HADOOP platform in the cloud. These data processing frameworks may employ

resilient data storage and sharing functions of DistressNet-NG. Survey123 [7], a GIS application used by disaster

responders, was integrated with R-Drive and R-Share. A Command Line Interface (CLI) also provides file system-like

functions for managing data in MEC.

In the remaining part of this section, we present the design of the main components that ensure resilient data storage

and sharing in DistressNet-NG: EdgeKeeper, RSock, R-Drive, and R-Share.

3.1 EdgeKeeper - Resilient Coordination

All devices run EdgeKeeper as a background process that coordinates with other devices in the edge network (as

shown in Figure 3). Other edge applications such as R-Drive, RSock, and MStorm interact with EdgeKeeper running

on the same device through predefined Application Programming Interface (API) calls. Unfortunately, conventional

coordination services such as Apache ZooKeeper [5] fail to operate in mobile edge environments. ZooKeeper is designed

for a cloud-like environment where the IP addresses of the consensus-maintaining servers remain static, and the link

quality between them is good. In a deployable CPS environment, nodes face frequent changes in IP address and node

and link failures. Moreover, any consensus mechanism requires frequent message exchanges, which may be hindered

by the quality degradation of wireless links in a deployable environment. In ZooKeeper, the server node configuration,

which runs the consensus, must be static. If the ZooKeeper ensemble loses the majority of the server nodes, the whole

ensemble fails to work. Thus, the ZooKeeper at its current state is not suitable for distributed edge computing at the

edge. We developed a resilient, distributed coordination service for edge computing, namely EdgeKeeper. EdgeKeeper is

an application that runs on all the devices in the background and provides resilient coordination for other applications.

EdgeKeeper runs a peer node discovery and link quality monitoring system. When some nodes leave the network,

the EdgeKeeper ensemble dynamically chooses new nodes to participate in the consensus and reconfigure the edge

network.

In this section, we briefly present each module of EdgeKeeper below, as shown in Figure 3. For a detailed description

of the four modules, we refer the readers to [11].

Replica

New Device Quorum
Maintained

Client
Waiting For

QuorumMaster

Configure
d A

s
M

ast
er

Quorum
Already

Established

Replica(s) Lost

Sufficient
Replicas for
Quorum

Quorum
Broken

Connected to New Edge

Replica Requirement NotMet

Connected
to New Edge

No Master or
 No Quorum

Fig. 4. EdgeKeeper state transition diagram, fromwhen a device is starting
to when consensus/quorum is achieved or broken, through devices leaving
or joining the edge.

3.1.1 ResilientMetadata Storage. Many distributed

applications running on an edge network require a

database to store critical coordination information.

For example, R-Drive needs to store the directory

structure information, and RSock needs to store the

device-ID-to-address mapping. In an edge network,

storing this critical information on a single node is

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 7

undesirable as devices frequently become inopera-

ble. To safeguard against these failures, EdgeKeeper

stores critical data over multiple replicas and main-

tains consensus among them. It uses three types of

device roles:master, replica, and client. A master node acts as the gateway node for forming the edge network. Often the

HPC or the WiFi group owner/leader (in the case of WiFi Direct) acts as the master node. As shown in Figure 2, there

are two edge networks. Here HPC-1 and HPC-2 act as masters for their respective networks. By default, all other devices

act as client devices. The clients read and write critical edge coordination data from one of the replicas that participate

in consensus. An administrator decides the required number of replicas and, implicitly, the size of the quorum (50% or

more available replicas needed for quorum). Depending on the network conditions (link and device state), the master

node decides which devices are replicas and take part in the consensus. For a network with a replica configuration of 𝑟 ,

a consensus could be reached as long as more than 𝑟/2 replicas are operational. The more replicas, the higher the fault

tolerance. However, increasing the number of replicas also requires more devices to participate in the quorum. Thus,

the administrator must analyze the deployment scenario and decide on the replica configuration, 𝑟 .

Figure 4 shows the states of a device after joining an edge network. An administrator chooses the master and

configures it before forming an edge network. The master runs a local DNS server for the edge network to function

without connectivity to the cloud. Any node that wishes to join an Edge cluster first finds the edge master (through

a specially crafted DNS query) and initiates the coordination to join the edge cluster. The master also observes the

edge network topology and dynamically decides which device to serve as replicas based on link quality. A master

dynamically tries to meet the number of replicas the administrator sets. When a new device joins an edge network, it

stays inoperable until the replica ensemble reaches the quorum. The new device acts as a replica or client based on the

master’s decision.

R-Drive stores the file and directory metadata on an EdgeKeeper replica ensemble through a local to-the-node

EdgeKeeper process. This metadata contains information about a file (on which devices the fragments of a file are

stored), and the directory structure. The directory structure is stored in a hierarchical structure of node objects (similar

to Linux iNodes) where each node represents a specific directory and the root node of the tree represents the root

directory for the local edge network.

3.1.2 Identity and Service Discovery. EdgeKeeper provides resilient device naming for edge networks using a Global

Naming Service (GNS) [43] and assigns a globally unique identifier (GUID) to each device. EdgeKeeper maintains a

cache of GUID records on the replica ensemble to preserve the name resolution service when an edge network gets

disconnected from the federated GNS servers. The name record updates are committed to the local cache and lazily

updated to the GNS server whenever the connection to the Internet is restored.

After joining an edge network, applications such as R-Drive/R-Share first try to discover other devices running the

same applications by querying EdgeKeeper. If a device offers a service, the service name and the role are stored as part of

the GUID record. Each GUID record contains an associative array of key-value pairs, as: GUID: <own GUID>, alias: <host

name for DNS>, netaddress: [<node's IP-1> , <node's Ip-2>], <application-name 1>: <application-role 1>, last

-update: <node's system time>. Any node wishing to find a list of nodes offering a particular service will query

EdgeKeeper to retrieve a list of GUIDs containing the key-value pair as service:role. The API for service discov-

ery is as follows: addService(ownService, ownDuty), removeService(targetService), getPeerGUIDs(targetService,

targetDuty).

Manuscript submitted to ACM

8 Sagor, et al.

3.1.3 Edge Monitoring and Management. EdgeKeeper runs a topology discovery service to learn the network topology

and link statuses. Each device periodically pings other devices in the network and assesses device-to-device link qualities

by measuring the expected number of transmissions required for a packet to be successfully transmitted and acknowl-

edged (ETx). The ETx of a path between nodes A and B is calculated as follows: 𝐸𝑇𝑥𝐴𝐵 = 1

(1−𝑃𝐷𝑅𝐴→𝐵) (1−𝑃𝐷𝑅𝐵→𝐴)
where 𝑃𝐷𝑅𝐴→𝐵 is the packet loss rate from A to B and 𝑃𝐷𝑅𝐵→𝐴 is the packet loss rate from B to A. EdgeKeeper

maintains a network graph that contains available nodes and the links among the nodes. When multiple wireless links

are possible between two devices (e.g., WiFi and LTE), EdgeKeeper maintains information about all links. R-Drive fetches

the topology graph from EdgeKeeper and uses this link quality information to decide where to store the data fragments

intelligently. The API for obtaining network topology information is as follows: getNetworkInfo(), getAllLocalGUID().

In addition to network topology, edge applications require the capabilities of peer devices, such as the number

of functioning processors, available memory, remaining battery, and available storage. EdgeKeeper running on each

device periodically measures the device resources and reports them to the Edge master. Any client application can

obtain edge health status using the API calls: putAppStatus(appName, appStatus), getAppStatus(targetGUID, appName

), getDeviceStatus(targetGUID).

3.2 RSock - Resilient Communication

Resilient Sockets (RSock) is a hybrid routing protocol that investigates the benefit of packet replication in terms of

packet delay reduction, as it is the key to decide when and how much replication should be used [3]. Based on real-world

exercises of first responders during a wide area search, we observed that the devices, in Disaster Response and Tactical

applications, often exhibit diverse connectivity characteristics [3]. These diverse characteristics have not been addressed

by previous routing protocols [2, 10, 12, 17, 25–27, 29, 30]. Also, these protocols have not been widely deployed due

to the middleboxes and firewalls in today’s wireless networks architecture. For instance, the latest releases of OLSR

and Prophet [1, 10, 30, 40] require OS upgrades and/or root privileges to be able to run. Hence, RSock is designed as a

user-space protocol to handle packets routing under diverse connectivity scenarios in CPSs and it leverages UDP for

its data and control packets (i.e., to facilitate its deployment, iterative modifications, and future releases). Before we

proceed in describing the main modules of RSock, we introduce three main parameters that were used in its design:

• Inter-contact time (ICT), which is the time duration between two contact events between a pair of nodes.

• Replication factor, 𝑟 𝑓 , which is the total number of data copies created at the source for a given packet.

• Replication gain, 𝛾𝑟 𝑓 = 𝐸 [𝐷1]/𝐸 [𝐷𝑟 𝑓]; whereas, 𝐷1 and 𝐷𝑟 𝑓 are the random variables for routing delay when

the replication factor is 1 and 𝑟 𝑓 , respectively, and 𝐸 represents the expected routing delay.

RSock mainly consists of four modules, as shown in Figure 3, Regret Minimization Algorithm, Replication Factor

Decision, Packet Forwarding, and Communication API. In this article we briefly present each module; for a detailed

description of the four modules, we refer the readers to [3].

3.2.1 Regret Minimization Algorithm. We presented in [3] a mechanism to capture any potential correlation among the

ICT of different paths between the sender node and destination node and how this correlation can affect the replication

gain, 𝛾𝑟 𝑓 . Basically, RSock estimates the ICT among the nodes as well as the path delay correlation and feeds them into

the Regret Minimization Algorithm, which dynamically decides the appropriate value of 𝑟 𝑓 , i.e., the packet replication.

The Regret Minimization Algorithm aims to obtain the best 𝑟 𝑓 while it gains more information about the network.

That is, it uses a probability distribution to represent the preference of choosing a particular value for 𝑟 𝑓 . Afterward,

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 9

and based on the probability distribution, the algorithm draws the value of 𝑟 𝑓 such that it is able to seamlessly switch

between a single-copy to a multi-copy protocol according to the current connectivity conditions in the network.

3.2.2 Replication Factor Decision. This module aims to calculate and maintain the replication factor probability

distribution. It relies on the packet delays for any given 𝑟 𝑓 in order to derive its corresponding 𝛾𝑟 𝑓 . The packet delays

are collected through the Round Trip Time (RTT) from the direct feedback of destination nodes. That is, based on the

ack the destination node sends upon receiving its packets. The delay information is collected for different values of 𝑟 𝑓 .

Once two Replication Factor Decision modules in two different nodes discover each other, they start to periodically

exchange probes to collect delay information for different values of 𝑟 𝑓 . The probes are sent via 𝑟 𝑓 paths specified by

Yen’s algorithm [47], which is employed by the Replication Factor Decision module to find multiple shortest paths to

the destination nodes. Once the module in the receiver node receives a probe, it immediately sends back a reply. Upon

the reception of the reply, the Replication Factor Decision module in the sender node uses the RTT to calculate the

replication factor distribution.

3.2.3 Packet Forwarding. Thismodule implements the forwardingmechanism based on themeasured delivery capability,

which is built based on the potential ICT correlation between different nodes in the network. It draws the values of 𝑟 𝑓

using the replication factor probability distribution that is produced by the Replication Factor Decision module and then

forwards the number of packet copies specified to their appropriate packet carriers. That is, by augmenting the packet

header with the following four fields: 1) the 𝑛𝑟𝑜 𝑓𝐶𝑜𝑝𝑖𝑒𝑠 field, which represents the remaining number of data copies. 2)

the 𝑛𝑒𝑥𝑡𝐶𝑎𝑟𝑟𝑖𝑒𝑟 field, which specifies the intermediate destination for the packet (i.e., this field is set by the current

carrier when it forwards the packet). 3) the 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 field, which contains a list of packet carriers that currently hold the

packet. 4) the 𝑝𝑎𝑡ℎ field, which contains a list of nodes that specifies the shortest path leading to the 𝑛𝑒𝑥𝑡𝐶𝑎𝑟𝑟𝑖𝑒𝑟 in the

network. When any node in the network receives a packet, it checks if it is the destination. If that is the case, it sends

back an ack that contains the delay of the packet. Otherwise, it adds itself to the 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 field (if it is the 𝑛𝑒𝑥𝑡𝐶𝑎𝑟𝑟𝑖𝑒𝑟

field) or it forwards the packet to the next hop according to the 𝑝𝑎𝑡ℎ field (if it is not the 𝑛𝑒𝑥𝑡𝐶𝑎𝑟𝑟𝑖𝑒𝑟 field).

3.2.4 Communication API. RSock Communication module handles the interaction between RSock and its applications

(such as R-Drive or R-Share) in the same way as a TCP socket is used, through the following API calls:

(1) Registration API call, in which R-Drive or R-Share registers with RSock. The registration is mainly performed

via 𝐿𝑜𝑐𝑎𝑙𝐼𝐷 and 𝑇𝑇𝐿 fields. 𝐿𝑜𝑐𝑎𝑙𝐼𝐷 is a 40-char string ID obtained from EdgeKeeper [11] and used in the sender

field of data packets. 𝑇𝑇𝐿 is a QoS parameter for the packets. 𝑇𝑇𝐿 indicates the maximum Time-to-Live, in

seconds/hours, that the sender is willing to tolerate before the packets get received by the final destination. If

any packet’s TTL expired before it reaches the final destination, RSock drops it.

(2) Transmission API call that is used when R-Drive or R-Share has some data to be sent. This API call contains

the bytes of the application data to be sent, the data size, as well as the ID of the destination device, which is

obtained from EdgeKeeper.

(3) Receiving API call. A zero-parameter blocking call in which R-Drive or R-Share waits to obtain any receiving

data from RSock. This call mainly returns the received data (and its size) as a byte array.

3.3 R-Drive/R-Share - Resilient Data Storage and Sharing

The R-Drive/R-Share system architecture (with its five major components and their integration with the DistressNet-NG

software ecosystem) is shown in Figure 3. The Directory Service provides a namespace for files and directories, the File
Manuscript submitted to ACM

10 Sagor, et al.

Handler performs file and directory operations (e.g., file creation, retrieval, and removal); the Adaptive Erasure Coding

encodes and decodes data into fragments using Reed-Solomon erasure coding, the Cipher encrypts and decrypts data,

and the Command Handler handles commands for basic storage operations. In the remaining part of this section, we

present the detailed designs for each of the components.

3.3.1 R-Drive UI and API design. Storage in R-Drive takes place via R-Drive’s user interface (UI) or Java client API. The R-

Drive UI allows a user to directly interact with the application. Client applications such as MStorm use the R-Drive API to

perform data storage. For completeness, the R-Drive client API is as follows: int mkdir(String rdriveDirectory, List<

String> permissionList); List<String> ls(String rdriveDirectory); int put(String localPath, String rdrivePath

, List<String> permissionList); int get(String rdrivePath, String localPath); int rm(String rdrivePath);

R-Drive also allows resilient data storage by monitoring files in user-selected directories on local storage, similar

to Google Backup and Sync [21]. A user can select application directories that are prone to data loss due to device

failure. R-Drive will periodically pull new changes and store them in R-Drive. Currently, R-Drive supports backing up

application data for Survey123 [7]. In the following sections, we present in detail the design of the core components of

R-Drive.

3.3.2 Directory Service and Access Control. The Directory Service handles the creation and retrieval of metadata,

checking metadata permissions, and presenting a namespace to clients. Metadata in R-Drive is organized as rnodes. The

rnode data structure is shown in Figure 5a. An rnode represents either a file or a directory. After creating an rnode,

the Directory Service stores it in EdgeKeeper which uses multiple replicas and consensus for resilience, as presented

in Section 3.1.1. A directory creation also can take place when a client invokes the mkdir() API function or when the

command -mkdir is executed in the CLI. Directory retrieval is initiated when a client invokes the get() API function or

when the command -ls is executed in the CLI.

R-Drive leverages a pluggable authentication scheme [5] for managing access control. R-Drive also implements

its custom authentication as a part of the Directory Service. Permissions can also be set via the -setfacl and -getfacl

commands entered through the CLI for an OWNER, WORLD, or a list of GUIDs. Permissions for an rnode pertain to

itself and do not apply to children.

3.3.3 R-Drive: Resilient Data Storage. Data is stored in R-Drive as files. File creation involves copying a file from the

local file system to R-Drive using the put() API or the -put command. Figure 5b shows the steps for file creation and

retrieval processes in R-Drive. For file creation, a local file is first divided into fixed-sized blocks. Each block is then

encrypted with a unique secret key and later converted into 𝑛 fragments using erasure coding. All fragments are sent

through RSock by invoking the RSock communication API. All fragments contain a timestamp that acts as a version

number for fragments. A receiver device only accepts fragments with the same or higher timestamps. The Directory

Service communicates with EdgeKeeper to create an rnode for the new file.

We are now presenting in detail the cyphering and adaptive erasure coding technique that R-Drive uses.

R-Drive Data Encryption R-Drive uses 256-bit AES encryption using a unique secret key for file encryption.

The key is further divided into 𝐵 key shards using Shamir’s Secret Sharing Scheme (SSSS) [42]. SSSS is a distributed

secret-sharing scheme in which a secret is divided into shards in such a way that individual shards cannot reveal any

part of the secret, whereas an allowed number of shards put together can reveal the secret. (𝑇, 𝑁) is the conventional
way to express the SSSS system, where 𝑁 is the total number of secret shards, and 𝑇 is the minimum number of shards

required to unveil the secret. In R-Drive, we used (𝐵, 𝐵) as parameters for SSSS, where 𝐵 is the number of blocks.

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 11

Field Size Description
rnodeType 1 Byte File or Directory rnode

rnodeID 16 Bytes Unique rnode ID
fileName Variable Original File Name

fileSize 8 Bytes Original File Size

fileID 16 Bytes Unique File ID

filePath Variable R-Drive File Path

N 2 Bytes N value for EC

K 2 Bytes K value for EC

blockCount 2 Bytes Number of Blocks

fragLocation Variable locations of fragments

fileList Variable List of Files

folderList Variable List of Subdirectories

permission Variable Access Control List

timeStamp 8 Bytes Time of Creation

(a)

Directory
Service EdgeKeeper RSock

Adaptive
Erasure CodingCipherFile Handler

Fragments

Storage
Retrieval

Encrypted BlocksBlocks

Metadata
Update

Metadata
Retrieve

File

put() get()

1 2

3

4 3

4

56

1
2

5

1 2 k

(b)

Fig. 5. (a) R-Drive rnode structure; and b) R-Drive file storage and retrieval steps: partitioning the file into 𝐵 blocks, encrypting them,
applying the adaptive erasure coding, and distributing the fragments to the best suitable 𝑛 nodes for storage. The retrieval process
starts with a device requesting fragments from other devices, then restructuring all blocks when enough fragments are received.

Adaptive Erasure Coding: R-Drive uses Reed-Solomon erasure coding for data redundancy. In R-Drive storage,

a file of size 𝐹 is divided into 𝑘 fragments, each of size 𝐹/𝑘 . Applying (𝑛, 𝑘) encoding on 𝑘 fragments will result in 𝑛

fragments, each of size 𝐹/𝑘 , where 𝑛 ≥ 𝑘 . Hence, the total file size will be 𝐹 ′ = 𝑛 · 𝐹/𝑘 . The encoded 𝑛 fragments are

then stored in geographically separated storage devices. To reconstruct the file, any 𝑘 fragments are sufficient. Thus,

the system tolerates up to 𝑛 − 𝑘 device failures. Since devices in MEC are prone to failure the question is how to choose

the best 𝑛 and 𝑘 values, and the fittest 𝑛 nodes (in terms of available battery life, storage capacity, etc.) so that the entire

MEC system can achieve the highest data availability for the least storage cost.

The ratio 𝑘/𝑛 in erasure coding, or the code rate, indicates the proportion of data bits that are non-redundant. As a

rule of thumb, when the code rate decreases, the file size after erasure coding increases, and vice-versa. But, a lower

code rate usually comes with higher 𝑛 and lower 𝑘 values, providing added data redundancy. So, we cannot simply

choose the lowest possible code rates; in that case, we will exhaust the system storage capacity very rapidly. Figure 6a

shows the file size 𝐹 ′ after erasure coding as a function of code rate to illustrate the fact that erasure-coded file size

increases exponentially with decreasing code rate.

To employ erasure coding in R-Drive, we need to answer the following: 1)What code rate and what (𝑘, 𝑛) pair should
the system choose? ; 2) Given a code rate and a (𝑘, 𝑛) value pair, which specific 𝑛 devices should the system store the 𝑛 file

fragments too? and 3) How to obtain the system parameters used in answering 1) and 2)?

Q1: What 𝑘 and 𝑛 values? The file size after erasure coding with code rate 𝑘/𝑛 is calculated as 𝐹 ′ = 𝐹 ∗ 𝑛/𝑘 , where 𝐹
is the original file size. In this case, if 𝑘/𝑛 is too small, 𝑛/𝑘 becomes very large, then the encrypted file size 𝐹 ′ becomes

very large as well. To address this trade-off, we express the cost of availability and storage 𝐶 as a weighted sum and

include them in the following minimization problem:

minimize

(𝑘,𝑛)
𝐶 (𝑘, 𝑛,𝑤𝑎) = 𝑤𝑎 ∗ 𝑘/𝑛 + (1 −𝑤𝑎) ∗ 𝑛/𝑘 (1)

subject to: 𝐹/𝑘 ≤ 𝑆𝑛, (2)

𝑇 ≤ 𝑇𝑘 , (3)

1/𝑁 ≤ 𝑘 ≤ 𝑛 ≤ 𝑁,𝑘, 𝑛 ∈ 𝑍+ (4)

0 ≤ 𝑤𝑎 ≤ 1 (5)

Manuscript submitted to ACM

12 Sagor, et al.

 0

 2000

 4000

 6000

 8000

 10000

 0 0.2 0.4 0.6 0.8 1

F'
 [M

B]

Code Rate (k/n)

F: 100M B

(a) (b)

Fig. 6. a) File size F’ after erasure coding (applied to a file F of size 100MB) as a function of the code rate (k/n); and b) Cost as a
function of code rate for different 𝑤𝑎

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a

ila
b

ili
ty

Device Availability

k=1,n=3
k=2,n=6

base

(a) k/n=1/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a
ila

b
ili

ty

Device Availability

k=1,n=2
k=3,n=6

base

(b) k/n=1/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a

ila
b

ili
ty

Device Availability

k=2,n=3
k=4,n=6

base

(c) k/n=2/3

Fig. 7. Example of different (𝑘,𝑛) pairs determining different system availability. Each group of a, b, and c contains two (𝑘,𝑛) pairs
of the same ratio. The baseline in each group represents pure local storage

where 𝑤𝑎 denotes the weight of availability cost, 1 −𝑤𝑎 the weight of storage cost, 𝑆𝑛 the 𝑛𝑡ℎ maximum available

storage of all nodes, 𝑇𝑘 denotes the 𝑘𝑡ℎ longest remaining time among the total available 𝑁 devices, 𝑇 denotes the

minimum time that a file is expected to be available in R-Drive. Constraint (2) ensures that the storage allocation for a

node does not exceed available storage for each device. Constraint (3) ensures that only devices with enough battery

will be selected to sustain file lifetime 𝑇 . Constraint (4) ensures that only positive 𝑛 and 𝑘 are selected, in the range

[1/𝑁, 𝑁]. The weight𝑤𝑎 is adjusted adaptively for different files, i.e., for a critical file, the system sets a large𝑤𝑎 so

that a small 𝑘/𝑛 is chosen to improve its availability and the opposite for non-important files.

We can solve the above minimization problem by iterating over all possible (𝑘, 𝑛) pairs and choosing those with

the minimum costs as solutions. The time complexity of this method is 𝑂 (𝑁 2). However, there are sometimes several

(𝑘, 𝑛) pairs with the same minimum costs. To further select among these (𝑘, 𝑛) pairs, we need a more precise method

to depict the system availability. For simplicity, we assume each device has the same availability 𝑝 . Then, the system

availability can be calculated as follows:

𝐴(𝑘, 𝑛, 𝑝) = 𝐶𝑛
𝑘
𝑝𝑘 (1 − 𝑝) (𝑛−𝑘) + ... +𝐶𝑛

𝑛𝑝
𝑛

(6)

Figure 7a, 7b, 7c each contains two (𝑘, 𝑛) pairs with the same ratio. As shown, when the code rate increases from

1/3 to 1/2 and then to 2/3, the system availability gradually decreases. Meanwhile, in each group, when the device

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 13

Table 2. Cost (C) lower bound, as a function of 𝑤𝑎 and the corresponding code rate 𝑘/𝑛 for the lower bound

𝒘𝒂 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.0

Cost (C) 1/N 0.6 0.8 0.91 0.98 1.0 1.0 1.0

Code Rate 1/N 0.35 0.5 0.65 0.8 1.0 1.0 1.0

availability is small, the (𝑘, 𝑛) pair with a smaller 𝑛 has higher availability than the other. However, as the device

availability gradually increases over a threshold, the setting with a bigger 𝑛 starts to achieve higher system availability

than the setting with a smaller 𝑛. In R-Drive, we calculate the device availability 𝑝𝑖 of device 𝑖 as Equation 7, where 𝑇𝑖

is the remaining time of device 𝑖 .

𝑝𝑖 =

{
1, 𝑇𝑖 ≥ 𝑇

𝑇𝑖/𝑇, 0 < 𝑇𝑖 < 𝑇
(7)

Algorithm 1: Choose (𝑘, 𝑛) and 𝑛 devices

Input :𝐹 , 𝑇 , 𝑆𝑖 , 𝑇𝑖 ,𝑤𝑎

Output : (k,n) and n devices

(𝑘, 𝑛) ← (1, 1)
𝐶𝑚𝑖𝑛 ← 1

for 𝑛′ ∈ 1...𝑁 do
for 𝑘′ ∈ 1...𝑛′ do

if Satisfying Eq.(3.2)(3.3) then
if 𝐶 (𝑘′, 𝑛′) < 𝐶𝑚𝑖𝑛 then
(𝑘, 𝑛) ← (𝑘′, 𝑛′)
𝐶𝑚𝑖𝑛 ← 𝐶 (𝑘′, 𝑛′)

end

if 𝑘′/𝑛′ = 𝑘/𝑛 then
if 𝐴(𝑘, 𝑛, 𝑝) < 𝐴(𝑘′, 𝑛′, 𝑝) then
(𝑘, 𝑛) ← (𝑘′, 𝑛′)

end

end

end

end

end
𝑉 ← pick up devices with 𝑆𝑖 > 𝐹/𝑘
sort 𝑉 based on 𝑇𝑖 in descending order

𝑉𝑛 ← choose top 𝑛 devices with the largest 𝑇𝑖

return (𝑘, 𝑛) and 𝑉𝑛

When R-Drive selects between (𝑘1, 𝑛1) and (𝑘2, 𝑛2) with
the same 𝑘/𝑛 values, it calculates 𝐴(𝑘1, 𝑛1, 𝑝) and 𝐴(𝑘2, 𝑛2, 𝑝),
where 𝑝 represents the average availability of devices, and

chooses the one with a larger value.

Q2: Which specific 𝑛 devices? After deciding (𝑘, 𝑛), R-Drive
will choose all devices with the remaining storage space larger

than 𝐹/𝑘 . Next, it sorts the selected devices based on the ex-

pected remaining time in descending order. Finally, it chooses

the top 𝑛 devices with the longest remaining time to store the

𝑛 file fragments.

Q3: How are algorithm input parameters decided?𝑤𝑎 and

𝑇 should be set based on two factors - how important (i.e.,

mission-critical) the file is, and how soon a user is expected

to access/read the data. As an example, for mission-critical

data, 𝑤𝑎 can be set high, e.g., 0.8-1.0. For example, one client

of R-Drive is MStorm, that takes real-time video recording

by first-responders as input and performs face detection and

recognition to produce victims’ images. MStorm will save the

victims’ images in R-Drive with high𝑤𝑎 value since identifying

victims by their facial images is crucial in disaster response

and casualty estimation. Additionally, users can specify an

approximate 𝑇 because some data is time sensitive and does

not serve any valuable purpose after a certain time has elapsed.

The complete algorithm for choosing (𝑛, 𝑘) and the𝑛 devices,

is given in Algorithm 1. When analyzing the algorithm, it is

important to observe that there is a code rate for which the cost is the lowest (optimal cost), as shown in Figure 6b. The

algorithm tries to achieve the optimal cost, regardless of the selection of 𝑛 and 𝑘 values. For a particular (𝑛, 𝑘), if the
code rate is similar to the optimal cost code rate, the algorithm will select this (𝑛, 𝑘), unless the devices do not meet

the storage and battery remaining time requirements (as mentioned in equation 1). Table 2 shows the optimal cost for

variable𝑤𝑎 and the code rates for which the optimal cost is achieved.

A natural question may arise if the cost for variable𝑤𝑎 is constant, why not use a look-up table to find the code rate

with the lowest cost? The answer is, choosing the code rate with the lowest cost does not tell us the exact values of 𝑛

Manuscript submitted to ACM

14 Sagor, et al.

Network
Topology EdgeKeeper RSock

CipherFile Handler
Encrypted Blocks

Blocks

Fetch
Peers

Local
Storage

File

send

1

2

3

2

3

4

1

1 2 k

Send
Receive

Fig. 8. R-Share file sharing steps: A file is divided into encrypted blocks and sent to other devices over RSock

and 𝑘 and which devices can be used. As an example, for𝑤𝑎 = 0.8, the code rate 0.5 can be achieved by 15 different

combinations of (𝑛, 𝑘). So, our algorithm not only chooses the code rate with the lowest cost (hence 𝑛 and 𝑘) but also

chooses devices with the minimum required storage and battery remaining time.

3.3.4 R-Drive Data Retrieval. Data retrieval in R-Drive involves gathering all blocks of a file and reconstructing it to

its original form, as illustrated in Figure 5b. File retrieval is initiated by calling get() API function or executing -get

command. Directory Service first communicates with EdgeKeeper and fetches the target metadata rnode that contains

location information of all fragments for all blocks. To reconstruct each block, the File Handler must retrieve any 𝑘

fragments out of 𝑛, where 𝑘 ≤ 𝑛. To retrieve any 𝑘 fragments, the File Handler requests from EdgeKeeper a list of

devices with their remaining energy and selects 𝑘 of those with the highest remaining energy, and sends fragment

requests to the 𝑘 devices. When 𝑘 fragment replies are received, File Handler employs Erasure Coding and Ciphering

for block decoding and decryption, respectively.

3.3.5 R-Drive Command Handler. R-Drive provides a command line interface (CLI) for Linux desktop users, to perform

storage operations on remote devices if the device operators allow it. Command Handler consists of a hand-written

lexer and parser. Lexer takes an input command as a text stream, converts it into a series of tokens and the parser

converts the tokens into a parse tree. The parse tree enables Command Handler to identify the type of command.

3.3.6 R-Share: Resilient Data Sharing. R-Share is a peer-to-peer message/voice recording/file-sharing application that

relies on RSock for resilient communication and on EdgeKeeper for service discovery. R-Share’s architecture, shown in

Figure 8, shares some common components with R-Drive such as File Handler, and Cipher but it does not rely on any

Directory Service. File Handler runs as a background service and interacts withh RSock for continuously receiving new

data packets and with EdgeKeeper’s Identity and Service Discovery component for periodically fetching peers that are

also running R-Share. To ensure a non-blocking experience for users, R-Share maintains two separate data queues for

sending and receiving data to/from RSock; users can push data (e.g., message, voice recording, file) to the application

without being blocked for job completion.

4 DISTRESSNET-NG FRAMEWORK IMPLEMENTATION

In this section, we present the hardware and software implementations for the DistressNet-NG framework. These

implementations were used in four real-world deployments. Details for the real-world deployments and performance

evaluations obtained from them are presented in Section 5.

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 15

(a) (b) (c)

Fig. 9. DistressNet-NG hardware implementations: (a) Texas A&M manpack and edge computing equipment: from 1 to 8, they
are LTE antenna, WiFi AP, LTE eNB, Intel NUC with LTE EPC and HPC, battery, camera, helmet, mobile phones; (b) NIST Rapidly
Deployable; (c) VirtualNetCom Featherlite eNB mounted under a UAV (drone)

(a) (b) (c) (d) (e) (f)

Fig. 10. DistressNet-NGAndroid applications: a-b) R-Drive, allowing navigation of the distributed file system and providing capabilities
to add/remove files and directories; c-d) R-Share showing peer selection window and file transfer report; e) EdgeKeeper showing
available peers; and f) R-Sock, an application that runs in the background.

We implemented DistressNet-NG on three hardware platforms, as shown in Figure 9. The details for each platform

are the following:

• Texas A&M - Manpack: The manpack, shown in Figure 9a, can be carried as a backpack by a first responder or

a soldier and consists of communication, computation, and interconnect components. For communication, 4G

LTE is provided by a Baicells Nova-227 eNB and WiFi by a Ubiquity UniFi Mesh Access Point. The computation

platform is provided by an Intel NUC server. Communication among all components is enabled by a Ubiquity

EdgeX router, while power for the components, is provided, through PoE, by onboard batteries. The LTE downlink

and uplink data rates are 110 and 20Mbps, respectively [8]. The WiFi module is capable of providing around

100Mbps data transfer rate. The Intel NUC runs edge applications, including Open5GS, a 4G LTE EPC. Figure 9a

also depicts typical user equipment that was used in all real-world deployments. The equipment consisted of

on-body cameras (mounted on helmets) and Essential PH-1 Android mobile devices.

• NIST - Rapidly Deployable: Figure 9b shows NIST Public Safety Communications Research (PSCR) deployable

system, which is equipped with LTE and WiFi communication capabilities. This system is powered by a portable

generator and can be rapidly deployed to a disaster zone on a pickup truck. For 10MHz downlink and uplink

channels, the observed LTE data rates are about 95 and 20Mbps, respectively.

Manuscript submitted to ACM

16 Sagor, et al.

(a) (b) (c)

Fig. 11. Gypsum, CO deployment (2018): a) deployment site; b) TAMUdeployable; c) NIST and TAMUmembers performing experiments

• VirtualNetCom - Featherlite LTE-in-a-Box Figure 9c shows the Featherlite eNodeB deployed on a DJI M600

Pro multi-rotor drone. An Android Essential PH-1 mobile device configured with the DistressNet-NG software

ecosystem is attached to Featherlite.

The DistressNet-NG software ecosystem, depicted in Figure 3, was implemented on Android mobile devices and

Linux servers. MEC applications that were integrated with our DistressNet-NG software suite were Survey123 [7]

and MStorm [13]. The developed DistressNet-NG software components are depicted in Figure 10. All DistressNet-NG

software components were released in the public domain [28].

R-Drive and R-Share are implemented in about 10,000 lines of Java code and run, as shown, as Android apps and

also as Linux servers. We used BackBlaze [9] Reed-Solomon erasure coding library and javax.crypto as the Cipher.

As presented in Section 3, R-Share employs a simpler design than R-Drive; it does not incorporate Erasure Coding,

Shamir, or Directory Service. Instead, it maintains a local database for indexing all sent and received messages and

files. R-Drive/R-Share uses Java client libraries that implement the APIs for EdgeKeeper and RSock, thus enabling

communication with the EdgeKeeper and RSock processes through JSON-based RPC over a local TCP socket.

The R-Drive and R-Share applications, shown in Figures 10a-10b and 10c-10d, respectively, provide resilient and

secure data storage and data sharing. Figure 10a shows the file system navigation capabilities and adding/removing

files/folders. Figure 10b shows configuration capabilities for R-Drive, including accessing R-Share. Figure 10c shows

R-Share’s interface for peer-to-peer sharing of files or text messages, while Figure 10d the GUID addressing for the

destination node of R-Share.

The EdgeKeeper and RSock Android applications, shown in Figures 10e and 10f run on all devices of an edge cluster

and are responsible for edge coordination, cluster formation and communication, respectively. Figure 10e shows the

edge devices, their availability status as well as the status of the cloud connectivity. Figure 10f shows that RSock is just

a daemon process.

5 PERFORMANCE EVALUATION

In this section, we present the evaluation for the implemented DistressNet-NG framework components that provide

resilient data storage and sharing. The performance evaluation is based on three real-world deployments and indoor

experiments. We also present simulation results that validate the analysis on which R-Drive’s adaptive erasure coding

technique is based on.

The real-world deployments where the R-Drive, R-Share, EdgeKeeper and RSock were evaluated were as follows:

• Gypsum, CO - Wildfire Fighting (2018): As shown in Figure 11, for a wildland-firefighting scenario, we

deploy our DistressNet-NG in an open mountainous region near Gypsum, CO. During this deployment, TAMU

deployable (Figure 9a) was used for assessing DistressNet-NG system’s distance coverage by both WiFi and LTE

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 17

(a) (b) (c)

Fig. 12. Disaster City, TX, deployment (2020): a) Pre-deployment team preparation with initial TAMU deployable; b) TAMU deployable
used in the simulated scenario; c) Victim images placed for victim’s face detection as a part of search and rescue operation.

0m

350m

600m

0m

350m

600m

A B C D

Test Scenario 1 Test Scenario 2

A B C D

(a) (b) (c)

Fig. 13. Christman Airfield, CO deployment (2021): a) deployment scenarios for the mobile devices and drone’s flight path; b) drone
carrying eNodeB and Master Node mobile device; and c) setup station for system initialization and troubleshooting

networks, where the LTE was provided by the NIST deployable (Figure 9b). From this experiment, we obtained

edge connectivity performance when distances among edge devices vary. Several components of DistressNet-NG

architecture were improved based on the findings of this deployment.

• Disaster City, College Station, TX - Wide Area Search and Rescue (2020): We deployed DistressNet-NG in

Disaster City, TX as part of a wide area search and rescue disaster response exercise, as shown in Figure 12. Our

applications were tested in a simulated massive earthquake scenario by different Texas Task Fore 1 (TTF1) first

responders to search for any survivors and assess the casualties. One first responder carried our manpack that

provided wireless communication (LTE and WiFi) and a high-performance computing (HPC) unit for the team

(Figure 12b). During this deployment, all processed data (e.g., victim’s face data produced by an MStorm Face

Detection application) were resiliently stored by R-Drive (i.e., in a local folder and successfully replicated in the

cluster). During the 2020 deployment in Disaster City, the DistressNet-NG ecosystem collected a total of 14.4GB

data from face detection and recognition that needed resilient and secure storage.

• Fort Collins, CO - Drone Assisted Wildfire Fighting (2021): To simulate a large-scale disaster response

scenario where disconnected mobile devices on the ground would not be able to collaborate, we deploy our

DistressNet-NG at the Christman Airfield in Fort Collins, CO where a UAV provides wireless connectivity and

computation resources [24]. The VirtualNetCom Featherlite LTE-in-a-Box in Figure 9c is used for this deployment.

We employed additional 12 mobile devices (Samsung Galaxy S9 and Sonim XP8), all running DistressNet-NG. Six

additional Bittium Tough phones were used for logging LTE Reference Signal Received Power (RSRP). The drone

followed two circular paths with a radius of 350m and 600m, respectively (Figure 13a). There are 12 flights in total,

each flight took approximately 20min. From this deployment, we learned the feasibility of UAV-based deployment

and understand the performance of our R-Drive/R-Share. We evaluated the data read/write success rate, latency for

R-Drive and the data delivery success rate, latency for R-Share in a hostile network environment. We conducted

Manuscript submitted to ACM

18 Sagor, et al.

𝒘𝒂 Lower Achieved Cost
Bound NS=30 NS=20 NS=10

1.0 0.00 0.2402 0.3613 0.66

0.9 0.6 0.6 0.6048 0.6782

0.8 0.8 0.8 0.8121 0.8360

0.7 0.9165 0.9165 0.9166 0.9183

0.6 0.9797 0.9797 0.9799 0.9807

0.5 1.0 1.0 1.0 1.0

(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
o

d
e
 R

a
te

 (
k

/n
)

wa

NS=10
NS=20
NS=30

(b)

 400

 800

 1200

 1600

 2000

 0 0.2 0.4 0.6 0.8 1

F
’

w
a

NS=10

NS=20

NS=30

(c)

Fig. 14. a) Achieved cost (function𝐶 (𝑘,𝑛, 𝑤𝑎) is dimensionless) for variable 𝑤𝑎 and Network Size NS ; b) Effect of 𝑤𝑎 on: a) code
Rate (𝑘/𝑛); and b) file size 𝐹 ′ , for different network sizes, NS=10, 20 and 30

the deployment where four first responders were deployed in a wide area for a search and rescue mission. Each

first responder carried a body-mounted camera that captures videos for face detection and recognition and

transfers them through a node that was carried by a drone. In this experiment DistressNet-NG system generated

a total of 4.22GB of data that were pushed into R-Drive.

Real-world deployments pose many challenges to conducting thorough tests varying several parameters which were

hard to control. We also conducted several tabletop experiments to thoroughly analyze the performances with varying

parameters such as link availability, data size, and EdgeKeeper configuration. We used a custom-coded application on

Android devices to turn off the WiFi and LTE links to change the link availability parameter.

In the remaining part of this section, we present the performance evaluation for resilient data storage and sharing,

edge coordination and communication in DistressNet-NG.

5.1 R-Drive Resilience through Adaptive Erasure Coding

In this section, we provide an in-depth analysis for how 𝑤𝑎 parameter impacts the choice (𝑘, 𝑛) values, hence, also
the code-rate and 𝐹 ′(file size after erasure coding). We also analyze the choice of code-rate and its impact on the cost

function. We performed experiments on variable network sizes (10, 20, 30), for a file size 𝐹 of 500MB, and an expected

file availability time 𝑇 of 300min. The storage 𝑆𝑖 and expected battery remaining times 𝑇𝑖 for nodes were generated

using a pseudo-random value generator with mean-variance of (100, 20) and (300, 80), respectively. The experiments

were conducted for 30 runs before the results were averaged.

5.1.1 Achieved cost for variable𝑤𝑎 . Table 14a shows the average achieved cost for variable𝑤𝑎 and network size. For

almost all 𝑤𝑎 , the average achieved cost approaches the optimal cost with a larger network size. This is due to the

fact that, with a larger network size the cost function is computed over more combinations of (𝑛, 𝑘) values, hence, the
algorithm achieves a cost value closer to an optimal value.

5.1.2 Impact of 𝑤𝑎 and Network Size on Code Rate and 𝐹 ′. Figure 14b illustrates that with increased 𝑤𝑎 , the code

rate decreases. This is expected since the algorithm takes𝑤𝑎 as an input for the weight of availability. If𝑤𝑎 is higher,

the algorithm chooses a larger 𝑛 in an attempt to provide more data redundancy, hence, the code rate decreases. For

network size 10, the chosen code rate is much higher compared to network sizes 20 and 30. This is due to the fact that,

for smaller networks size, several runs could not produce a solution due to not having nodes with enough storage

and/or remaining battery time. Figure 14c shows 𝐹 ′ as a function of 𝑤𝑎 . 𝐹
′
increases exponentially with higher 𝑤𝑎 .

Again, since chosen code rate is higher for network size 10, 𝐹 ′ is higher compared to network sizes 20 and 30.

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 19

 5

 6

 7

 8

 9

 10

0.5 0.6 0.7 0.8 0.9 1.0

k
,
n

wa

k
n

(a)

 4

 6

 8

 10

 12

 14

 16

 18

 20

0.5 0.6 0.7 0.8 0.9 1.0

k
,
n

wa

k
n

(b)

 5

 10

 15

 20

 25

 30

0.5 0.6 0.7 0.8 0.9 1.0

k
,
n

wa

k
n

(c)
Fig. 15. Average (𝑘,𝑛) for different network sizes NS: a) 10; b) 20; and c) 30

 90

 100

 110

 120

 130

0.5 0.6 0.7 0.8 0.9 1.0

S
to

ra
g
e

S
iz

e
[M

B
]

wa

NS=10
NS=20

NS=30

(a)

 280

 300

 320

 340

 360

 380

 400

0.5 0.6 0.7 0.8 0.9 1.0

R
em

ai
n
in

g
 B

at
te

ry
 [

V
]

wa

NS: 10
NS: 20

NS: 30

(b)

Fig. 16. Impact of 𝑤𝑎 on: a) storage size; and b) battery remaining time, for different network sizes NS=10, 20, 30

Figure 15 shows the averages of chosen 𝑛 and 𝑘 values for variable network size over 30 iterations. As discussed

earlier, for higher𝑤𝑎 , the algorithm chooses a larger 𝑛 value to provide data redundancy. The cost function aims to

reach the minimum cost, regardless of the choice of (𝑛, 𝑘) values. In Figure 15c, for𝑤𝑎 0.8, the chosen (𝑛, 𝑘) values are
lower than the values selected for 0.7. This is because for𝑤𝑎 of 0.8, the optimal cost code rate is 0.5, and the algorithm

chose (𝑛, 𝑘) values of (10,5), (12,6), (14,7) over 30 runs that averaged to (13.07, 6.53).

5.1.3 Impact of𝑤𝑎 and Network Size on selected storage and battery remaining time. Figure 16 shows the average storage

capacity and battery remaining time of the selected nodes. Figures 16a and 16b illustrate the fact that on average the

algorithm chooses nodes with at least minimum required storage capacity, but higher battery remaining time. This is

due to the fact that, on the occasion of two different solutions having the same cost, the algorithm has provision to

choose the nodes with higher device availability, as presented in Equation 7.

5.2 Directory Service Resilience

As discussed in Section 3.1, R-Drive relies on EdgeKeeper for storing file and directory metadata. This section evaluates

the resiliency of directory service first in terms of its tolerance to replica faults and then latency in accessing directory

metadata.

5.2.1 Edge Formation and Reformation. We measured the resilience of R-Drive’s Directory Service based on how fast

Directory Service becomes operational after a failure event takes place. Directory Service becomes inoperational when

the replica quorum breaks for not having enough replica devices. EdgeKeeper always tries to maintain a maximum

number of replica devices in the ensemble. In our experiments

The first set of experimentswas conducted outdoors in the Fort Collins, CO deploymentwhich used the VirtualNetCom

Featherlite drone. The results are depicted in Figure 17a. In this experiment, the number of replicas is configured to 3.

The first two bars represent age formation time, i.e., how long it takes to run a new EdgeKeeper ensemble. In the first bar,

Manuscript submitted to ACM

20 Sagor, et al.

 0

 10

 20

 30

 40

 50

 60

 70

(0
M

+0R
)+

2C
 --

> (1
M

+1R
)

(0
M

+0R
)+

3C
 --

> (1
M

+2R
)

(1
M

+1R
)+

1C
 --

> (1
M

+2R
)

(1
M

+2R
)-
1R

 --
> (1

M
+1R

)

(1
M

+2R
)-
1R

+1C
 --

> (1
M

+1R
)

T
im

e
in

 S
ec

o
n
d
s

[s
ec

]

Edge Formation (Replica/Node)+Client/-Replica=(Replica/Nodes)

(a)

 0

 10

 20

 30

 40

 50

 60

 70

(0
M

+0R
)+

2D
 --

> (1
M

+1R
)

(1
M

+1R
)+

1D
 --

> (1
M

+2R
)

(1
M

+2R
)+

2D
 --

> (1
M

+2R
+2C

)

(1
M

+2R
)+

2D
-1

R
 --

> (1
M

+2R
+1C

)

(1
M

+2R
)+

2D
-2

R
 --

> (1
M

+2R
)

(0
M

+0R
)+

3D
 --

> (1
M

+2R
)

(0
M

+0R
)+

5D
 --

> (1
M

+4R
)

(1
M

+4R
)+

2D
 --

> (1
M

+4R
+2C

)

(1
M

+4R
)+

2D
-2

R
 --

> (1
M

+4R
)

(1
M

+4R
)+

2D
-3

R
 --

> (1
M

+3R
)

(0
M

+0R
)+

7D
 --

> (1
M

+6R
)

(1
M

+3R
)+

1D
 --

> (1
M

+4R
)

(1
M

+6R
)+

2D
 --

> (1
M

+6R
+2C

)

(1
M

+6R
)+

2D
-2

R
 --

> (1
M

+6R
)

(1
M

+6R
)+

2D
-3

R
 --

> (1
M

+5R
)

E
d
g
e

F
o
rm

at
io

n
 L

at
en

cy
 [

se
c]

Replica Setting

3 Replica 5 Replica 7 Replica

(b)

Fig. 17. Edge formation and reformation latency for variable EdgeKeeper replica settings. Here M, R, C, and D denote master, replica,
client, and new device, respectively. For each x-axis tick, the equation describes the event. The term inside parentheses on the left side
of the equation represents an initial condition and the remaining terms represent the changes that have been introduced. The right
side represents the new network state. For example, (1𝑀 + 1𝑅) + 1𝐷− > (1𝑀 + 2𝑅) denotes that, in a network containing 1 master
and 1 replica one new device joins and the new device start acting as a replica. We conducted experiments in two different settings:
(a) Outdoor experiments conducted in Fort Collins, CO (b) controlled indoor experiments

only two devices join the network, and an EdgeKeeper ensemble is formed as soon as a quorum consisting of two devices

is reached. In the case of the second bar, three devices joined together and formed an ensemble, which took longer than

when two nodes only joined. The third bar represents the scenario where two replica devices are present and another

device joins the network. In this case, the device initially acts as a client device. When the EdgeKeeper master detects

the new device in the topology, it requests the new device to serve as a replica and restarts the already-established

replica ensemble. That way, the newly formed ensemble has three replicas. We can observe that when forming a new

EdgeKeeper ensemble, it takes around 20sec which is the time for a master to detect a stable node in the edge topology

(topology ping interval of 10sec) and then request the new nodes to form the replica ensemble. When an EdgeKeepr

ensemble is already working with > 𝑟/2 replicas (r is the required number of replicas), adding a new device to the

network takes around 65 s to add the new device as a new replica and restart the whole replica ensemble.

To further investigate the performance, we conducted table-top experiments in a controlled lab room environment.

As shown in Figure 17b, we performed experiments with EdgeKeeper replica configurations of 3, 5, and 7 to measure

the average latency of edge reformation delay by introducing changes in a stable ensemble. It could be clearly observed

that forming a new edge takes longer when we configure the edge ensemble with more replicas. When a new device is

added to a network where the required number of replicas are already present (e.g. for 3 replicas if we add two new

devices as clients), the clients immediately start their operation. However, when we add a device to an edge network

where the edge ensemble is working with 𝑟/2 replicas, the new device would be added to the replica configuration.

Restarting replicas takes significant time, such as in the 60sec in the case of the five-replica configuration. This latency

contains the time period when a new device is present in the network topology and the master needs to decide whether

the link is stable enough for the new device to be added as a replica. Overall, we observe that the maximum latency

for restarting of replica configuration is maintained within the 70sec after a new device is added to an edge network.

We note that this latency could be reduced in two ways: 1) by reducing the ping interval in the topology monitoring

service; and 2) by using a lower threshold for replica down time. However, changing these thresholds needs further

consideration of the amount of bandwidth consumed and the number of replicas. These two parameters should be

optimized for specific network conditions (e.g., drone mobility vs. human mobility).

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 21

 11

 12

 13

 14

 15

 16

1 2 4 8 10 12 15

R
ea

d
 L

at
en

cy
 [

m
se

c]

Metadata Size [KB]

Number of Replicas

1 3 5 7

(a)

 16

 18

 20

 22

 24

 26

 28

1 2 4 8 10 12 15

W
ri

te
 L

at
en

cy
 [

m
se

c]

Metadata Size [KB]

Number of Replicas

1 3 5 7

(b)

Fig. 18. Metadata read (a) and write (b) latencies as a function of metadata size, for link availability 1.0

It should also be noted that our current design of EdgeKeeper considers the master to be the central node of an edge

network (e.g., WiFi group leader or HPC attached to deployable manpack). The master node fails when this central node

fails, leading to the failure of the wireless backbone. In the future, we plan to investigate a robust master placement

strategy where a master node could be automatically elected by a group of nodes. There are many leader election

algorithms, such as selecting the node with the highest ID. We need to consider link quality and the duration of a node’s

connection for the master selection.

5.2.2 Directory Service Latency. Metadata read/write performances can vary significantly for different replica con-

figurations and metadata sizes. Figure 18a and 18b show the average metadata read and write latencies, respectively

for variable metadata sizes and EdgeKeeper replica configuration. Each result represents the average latency of 1,000

reads or writes operations. Figure 18a shows that for each metadata size group, as the number of replicas increases

more than 1, metadata retrieval latency drops. This is because the read operation does not require many consensus

message exchanges and more servers can perform better load balancing, resulting in overall lower retrieval latency.

Variable metadata sizes have minimal effect on retrieval latency. As the range of metadata size is tiny, usually within

1 to 15KB, the average cost to fetch most metadata is almost the same. Figure 18b also shows that, as the number of

replicas increases more than 1, write latency increases significantly. This is because having more replicas brings the

additional message exchange to check for consensus among the replicas before the data is committed. For both read and

write, adding more servers does provide additional fault tolerance but does not significantly minimize latency. Lastly,

we notice that for some smaller metadata sizes, the read and write latency is higher compared to larger metadata sizes.

This is due to the fact that EdgeKeeper ensemble is re-established before performing the read/write operation, adding

additional time to read/write operations.

5.2.3 EdgeKeeper Overhead. To assess how lightweight EdgeKeeper is (i.e., its overhead), we employed the Android

Studio profiler, which measures the resource consumption of running EdgeKeeper on mobile devices. Figure 19 depicts

the memory and energy consumptions of EdgeKeeper. The results show that when running in master mode, EdgeKeeper

consumes significantly more memory and network traffic than when running in replica mode. However, the energy

consumption is similar for master and slave modes. In slave mode, the memory consumption by the EdgeKeeper remains

intact even when the number of nodes in the cluster increases. In all cases, the memory consumption is below 40MB,

which is negligible compared to 4GB internal memory of the mobile phone used. EdgeKeeper also consumes very

Manuscript submitted to ACM

22 Sagor, et al.

 35

 36

 37

 38

 39

 40

2 4 6 8

M
em

o
ry

 [
M

B
]

Number of Nodes

Master
Non-Replica

(a)

 130

 140

 150

 160

 170

 180

 190

2 4 6 8

E
n

er
g

y
 [

m
W

h
]

Number of Nodes

Master
Non-Replica

(b)

Fig. 19. EdgeKeeper overhead on an Essential PH1 mobile device, as a function of the number of nodes in the edge and the type of
EdgeKeeper role: a) memory consumption; and b) energy consumption

low energy (0.17Watt per hour) compared to a battery capacity of 3050mAh. These results show that EdgeKeeper is

lightweight and suitable for MEC mobile devices.

5.3 Communication Resiliency with RSock

These performance evaluation results were obtained from the Disaster City, College Station TX - Wide Areas Search

and Rescue deployments, using the Texas A&M Manpack and the NIST Rapidly Deployable systems along with six

Android devices (labeled by 𝑃1 to 𝑃6), RSock initially used Replication factor, 𝑟 𝑓 = 1 (defined in Section 3.2); and R-Share

set its QoS parameter 𝑇𝑇𝐿 = 3 hours, i.e., when it executes the registration API call (presented in Section 3.2.4).

Experiment-I aims to demonstrate the interoperability of EdgeKeeper, RSock, and R-Share when they are deployed

into two systems as well as the delay-tolerant routing capability (i.e., resiliency) of RSock. The two systems were

physically separated by ∼100m (i.e., Texas A&M Manpack was indoor and the NIST Rapidly Deployable was outdoor).

We used 𝑃4, 𝑃5, and 𝑃6 that were simultaneously connected via WiFi and LTE to the NIST Rapidly Deployable system

and 𝑃1, 𝑃2, and 𝑃3 that was connected via WiFi to Texas A&M Manpack system. This experiment has five test cases,

𝑇𝐶1-𝑇𝐶5, as shown in Figure 20a. In 𝑇𝐶1, while 𝑃3 is connected to Texas A&M Manpack system, 𝑃1 sent a short text

message to 𝑃4, 𝑃5, and 𝑃6. Later, after 4min, 𝑃3 moved to the NIST Rapidly Deployable system and stayed connected

to it for ∼100sec. In 𝑇𝐶2 (while 𝑃3 was still connected to the NIST Rapidly Deployable system), 𝑃4, 𝑃5, and 𝑃6 sent a

short text message to 𝑃1, 𝑃2, and 𝑃3, respectively. In 𝑇𝐶3, 𝑃3 moved to the Texas A&M Manpack system and staying

connected to it for 120sec. Meanwhile, 𝑃1 sent a short text message and a 10KB file to 𝑃4, 𝑃5, and 𝑃6, respectively. In

𝑇𝐶4 and 𝑇𝐶5, and after 10min, 𝑃3 moved to the NIST Rapidly Deployable system.

The PDD for 𝑇𝐶1 (i.e., for the short text message via the mule) is shown in Figure 21a. Once the mule, 𝑃3, becomes

physically close to any system, it discovers its WiFi or LTE networks and automatically re-associates with it (i.e., 𝑃3

pre-stored the WiFi passphrases and the LTE configurations of both systems). In𝑇𝐶2, while 𝑃3 is connected to the NIST

Rapidly Deployable system, it instantly received the short text message that is sent from 𝑃4, 𝑃5, and 𝑃6. Afterwards, 𝑃3

carried and delivered (i.e., after 100sec) 𝑃4, 𝑃5, and 𝑃6’s short text messages to 𝑃1 and 𝑃2 as shown in 𝑇𝐶3 in Figure 21a.

𝑇𝐶4 and 𝑇𝐶5 in Figure 21a show the PDD of the short text messages and the 10KB files, respectively, that were sent

from 𝑃1 in Texas A&M Manpack system and later, after 600sec, carried and delivered to 𝑃4, 𝑃5, and 𝑃6 smartphones via

the mule, 𝑃3. The PDR of all test cases of this experiment is 100%, as shown in Figure 20c.

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 23

Mule Movement for 100 meter

Texas A&M

Manpack System

P1 P2

P3

P4 P5

NIST Rapidly

Deployable System

P6

(a)

NIST Rapidly

Deployable System

WiFi Direct

ad-hoc System
Mules Movement for 100 meter

P1 (client)

P2 (GO)

P4 P5

P6

P3

(b)

 0

 20

 40

 60

 80

 100

I II

P
a
c
k
e
t
D

e
le

iv
e
ry

 R
a
ti
o

Experiment #

(c)

Fig. 20. A schematic diagram of Texas A&M Manpack system, NIST Rapidly Deployable system, and WiFi Direct ad-hoc system.
Mules connectivity during: a)𝑇𝐶1 -𝑇𝐶5 of Experiment-I. b)𝑇𝐶1 -𝑇𝐶6 of Experiment-II. Solid lines represent simultaneous LTE and
WiFi links. Dashed lines represent WiFi or WiFi Direct links. c) Packet Delivery Ratio of Experiment-I and Experiment-II.

 0

 100

 200

 300

 400

 500

 600

 700

TC1 TC2 TC3 TC4 TC5

P
a
c
k
e
t
D

e
la

y
 (

s
)

Test Case #

(a)

 0

 5

 10

 15

 20

 25

TC1 TC2 TC3 TC4 TC6

P
a
c
k
e
t
D

e
la

y
 (

s
)

Test Case #

(b)

 0

 100

 200

 300

 400

 500

 600

 700

TC2
* TC3

* TC4
* TC5 TC6

*

P
a
c
k
e
t
D

e
la

y
 (

s
)

Test Case #

(c)

Fig. 21. Packet Delivery Delay for all test cases for: a) Experiment-I. b & c) Experiment-II.

0%

2%

4%

6%

8%

10%

0.01 0.2 1 5 10 21

C
o

n
tr

o
l
T

ra
ff

ic
 O

v
e

rh
e

a
d

File Size (MB)

(a)

 0

 3

 6

 9

 12

 15

 18

I2 I3 II2 II4 II5 II6

D
T

N
 O

v
e

rh
e

a
d

Experiemnt#TC#

(b)

Fig. 22. a) Control traffic overhead for all files. b) Overhead for DTN test cases of Experiment-I and Experiment-II.

Experiment-II aims to demonstrate the delay-tolerant routing capabilities (i.e., resiliency) of RSock when it runs

between a WiFi Direct ad-hoc system and the NIST Rapidly Deployable system, as shown in Figure 20b. The WiFi Direct

ad-hoc system was formed indoors by 𝑃1 and 𝑃2 phones. 𝑃2 used WiFi Direct to establish a P2P group by performing

the Group Owner role, and 𝑃1 was preforming the client role by connecting via WiFi Direct to 𝑃2. Meanwhile, 𝑃4, 𝑃5,

and 𝑃6 phones were connected via WiFi to the NIST Rapidly Deployable system, which was outdoor; the physical

distance between the two systems was ∼100m. This experiment had six test cases that are shown in Figure 20b. In 𝑇𝐶1,

𝑃4 sent a 10KB file to both 𝑃5 and 𝑃6. In 𝑇𝐶2, 𝑃4 sent a 50KB file to 𝑃1, 𝑃2, 𝑃5, and 𝑃6 phones. Later, after ∼7min, the

user of 𝑃6 left the NIST Rapidly Deployable system and moved towards the WiFi Direct ad-hoc system. In 𝑇𝐶3, 𝑃1 sent

a 10KB file to 𝑃2, 𝑃4, 𝑃5, and 𝑃6 phones. Later, after ∼6min, 𝑇𝐶4 was conducted while the user of 𝑃6 moved back to the

NIST Rapidly Deployable system. Afterwards, after 𝑃6 established its connection with the NIST Rapidly Deployable

system, 𝑃4 sent a 200KB file to 𝑃1, 𝑃2, 𝑃5, and 𝑃6 phones. Next, 𝑃3 joined as a mule and its user moved from the WiFi

Direct ad-hoc system towards the NIST Rapidly Deployable system, and then back to the WiFi Direct ad-hoc system

within ∼10min. In 𝑇𝐶5, 𝑃1 sent a 1MB file to 𝑃4, 𝑃5, and 𝑃6. Next, after ∼4min, 𝑃3 user moved back to the NIST Rapidly

Deployable system. In 𝑇𝐶6, 𝑃6 switched it connection with the NIST Rapidly Deployable system from WiFi to LTE and

Manuscript submitted to ACM

24 Sagor, et al.

sent a 1 MB file to 𝑃1, 𝑃2, and 𝑃3. Lastly, after ∼5min, 𝑃3 disconnected from the NIST Rapidly Deployable system and

connected to the WiFi Direct ad-hoc system.

𝑇𝐶1 and 𝑇𝐶2 in Figure 21b present the PDDs for the 10KB and 50KB files that were sent from 𝑃4 to both 𝑃5 and 𝑃6

in the NIST Rapidly Deployable system. 𝑇𝐶2
∗ in Figure 21c shows the PDD of the 50KB files that were sent from 𝑃4

in the NIST Rapidly Deployable system and then carried and delivered after 420sec to 𝑃1 and 𝑃2 in the WiFi Direct

ad-hoc system. Once the mule, 𝑃6, is connected to the WiFi Direct ad-hoc system during 𝑇𝐶3, it received along with 𝑃2

a 10KB file with the PDD that is presented in 𝑇𝐶3 in Figure 21b from 𝑃1. Later, after ∼6min, 𝑃6 carried and delivered

the 10KB file to 𝑃4 and 𝑃5 in the NIST Rapidly Deployable system, as shown in𝑇𝐶3
∗ in Figure 21c. The PDD of ∼5sec of

the 200KB file that is sent from 𝑃4 and delivered to 𝑃5 and 𝑃6 is presented in 𝑇𝐶4 in Figure 21b. The 200KB file is then

carried via the new mule, 𝑃3, to 𝑃1 and 𝑃2 in the WiFi Direct ad-hoc system, as presented in 𝑇𝐶4
∗ in Figure 21c. 𝑇𝐶5

∗ in

Figure 21c shows the PDD of three 1MB files, which demonstrates RSock’s capability to deliver relatively large files

in delay-tolerant scenarios via the mule. 𝑇𝐶6
∗ in Figure 21c shows the PDD when 𝑃6 connected to the NIST Rapidly

Deployable system and sent a 1MB file via LTE to 𝑃1 and 𝑃2 in the WiFi Direct ad-hoc system; this file is also carried

and delivered via 𝑃3. The PDR of all test cases of this experiment is also 100%, as shown in Figure 20c.

RSock overhead. In order to evaluate the overhead of RSock, we consider the control traffic overhead = 1 -

(𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒)/(𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑖𝑧𝑒 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑖𝑧𝑒). Whereas, each data packet consists of a header and a

payload (i.e., application data), control packets are the imposed overhead of RSock. Similarly, we propose the DTN

overhead = (#𝑐𝑜𝑝𝑖𝑒𝑠 − #𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑)/#𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 . Whereas, #𝑐𝑜𝑝𝑖𝑒𝑠 represents the total number of transmissions (i.e., all

copies of a message), #𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 represents the total number of delivered messages (i.e., only the first copy that reaches

the destination is counted and the rest are discarded).

As shown in Figure 22a, RSock has a control traffic overhead that ranges from 2.8% up to 6% for 0.01-21MB files. This

overhead is due to the additional header that RSock’s communication API imposes to the packets’ payloads to indicate

the QoS parameters, to handle packets fragmentation, etc. Similarly, the overheads of DTN test cases of Experiment-I

and Experiment-II are presented in Figure 22b. The DTN overhead for Experiment-I is declining from 𝑇𝐶2 to 𝑇𝐶3 after

RSock in the Texas A&M Manpack’s smartphones discovers the path via the mule, 𝑃3, to the NIST Rapidly Deployable

system. The same decline in the overhead also occurs from 𝑇𝐶2 to 𝑇𝐶4 and from 𝑇𝐶5 to 𝑇𝐶6 for Experiment-II with 𝑃6

and 𝑃3 mules, respectively, as shown in Figure 22b.

5.4 R-Drive Data Storage Throughput

These performance evaluation results were obtained from the Texas A&M manpack and 9 Android devices (with

LTE and WiFi connectivity), in an indoor lab environment. Figures 23 and 24 show the average data read and write

throughput for variable code rates, block sizes, and link availability. Each phone stored and retrieved 3GB of data

simultaneously, comprising file sizes ranging between 10 to 200MB. We calculated throughput by dividing the data size

by the time it took for distribution or retrieval. The experiment was conducted in a purely connected network (link

availability 1.0), as well as a loosely connected network (link availability 0.5). As figures suggest, read/write throughput

is higher in a purely connected network compared to a loosely connected network. Also, increasing block size increases

throughput for both read and write. This is due to the fact that a higher block size ensures a lower block count, resulting

in a lower number of total fragments that requires distribution or retrieval over the network. Moreover, for most block

size groups, throughput slightly drops with lower code rates due to lower code rates usually coming with higher n and

k values, resulting in more fragments to be distributed or retrieved, respectively. Lastly, throughput for some larger

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 25

 6

 7

 8

 9

 10

 11

1 2 4 8 16 32 64 80

R
ea

d
 T

h
ro

u
g
h
p
u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(a) Read

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 80

W
ri

te
 T

h
ro

u
g
h
p
u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(b) Write

Fig. 23. Data read and write throughput as a function of block size, for 0.5 link availability

 10

 12

 14

 16

 18

1 2 4 8 16 32 64 80

R
ea

d
 T

h
ro

u
g
h
p
u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(a) Read

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64 80

W
ri

te
 T

h
ro

u
g
h
p
u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(b) Write

Fig. 24. Data read and write throughput as a function of block size, for 1.0 link availability

 0

 5

 10

 15

 20

 25

0.2 0.4 0.6 0.8 1.0

D
at

a
S

to
ra

g
e

D
el

ay
 [

m
in

]

Link Availability

RSock TCP

(a)

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

P1
--
> P

2

P1
--
> P

3

P1
--
> P

4

P1
--
> P

5

P1
--
> P

6

P2
--
> P

1

P2
--
> P

3

P2
--
> P

4

P2
--
> P

5

P2
--
> P

6

P3
--
> P

1

P3
--
> P

2

P3
--
> P

4

P3
--
> P

5

P3
--
> P

6

P4
--
> P

1

P4
--
> P

2

P4
--
> P

3

P4
--
> P

5

P4
--
> P

6

P5
--
> P

1

P5
--
> P

2

P5
--
> P

3

P5
--
> P

4

P5
--
> P

6

P6
--
> P

1

P6
--
> P

2

P6
--
> P

3

P6
--
> P

4

P6
--
> P

5

M
es

sa
g
e

D
el

ay
 [

se
c]

Receivers

P1 P2 P3 P4 P5 P6

(b)

 250

 260

 270

 280

 290

 300

 310

10
0K

B

20
0K

B
1M

B
2M

B
8M

B

T
h
ro

u
g
h
p
u
t

(K
B

/s
ec

)

File Size

(c)

Fig. 25. (a) R-Drive data storage delay on highly sparse network connectivity compared to TCP; b) R-Share Fort Collins experiment
with Drone; c) R-Share throughput for tabletop experiment for small and large file sizes.

block size were higher compared to smaller block sizes. This is due to the fact that RSock communication module makes

routing decision which sometimes selects an available path that may take longer time for data delivery.

We evaluated the delay of data storage when using RSock and we compared it with a pure TCP implementation. Using

10 total devices, each device shared a file of 10MB with every other phone. Hence each device stored a total of 90MB of

data in R-Drive, and all devices stored a total of 900MB of data in R-Drive. We controlled the WiFi link availability as (0.2,

Manuscript submitted to ACM

26 Sagor, et al.

Table 3. Number of allocated and de-allocated objects for differ-
ent numbers of file creation and retrieval

Count File Creation File Retrieval

Alloc Dealloc Alloc Dealloc
10 4,381 4,381 2,526 2,526

100 43,885 43,876 25,298 25,288

1,000 438,911 438,884 253,012 252,996

Table 4. R-Drive energy consumption for different devices

Device Runtime Consumed Dist-NG
h:min % mAh Wh Wh

Samsung S8 3:30 12.5 377.4 1.5 3.5

Goole Pixel 2 3:05 11.9 323.5 1.2 3.2

Essential PH1 3:15 12.6 381.8 1.5 3.8

0.4, 0.6, 0.8, 1.0) of devices using a synthetic application that periodically turned WiFi links on/off based on previously

set probabilities. For example, if the link failure probability is 0.8, the device will be randomly connected to WiFi for

20% of the experiment time. Figures 25a show the performance evaluation results. As shown, RSock data-sharing

delay is quite significant when link availability is low. This is due to the fact that RSock network topology learning

time increases dramatically for highly sparse network connectivity. However, for higher link availability, RSock-based

data-sharing delay reduces significantly.

5.5 R-Share Data Throughput and Delay

These performance evaluation results were obtained from the Fort Collins, CO deployment which used the VirtualNet-

Com Fetherliste system and Android mobile devices. R-Share’s message delivery delay between pairs of mobile devices

is shown in Figure 25b. The variance in successful message delay for different devices is fairly high as the network

connectivity was highly sparse due to drone movement along the path. Figure 25c also shows R-Share throughput in a

table-top experiment using two phones. We sent approximately 100 files of different file sizes 100KB, 200KB, 500KB,

1MB, 2MB, and 8MB, and collected the time for successful reception. Throughput was calculated by dividing the total

amount of data by the total time.

5.6 Framework Overhead

In this section, we present our performance evaluation results that show the overhead of the various components for

DistressNet-NG resilient data storage and sharing, from the perspective of memory overhead, computation overhead,

and energy consumption overhead.

5.6.1 Memory. We traced the real-time memory footprint for R-Drive using Android Profiler during the file storage and

retrieval processes. The reason for it was to identify memory management problems in the R-Drive Android application,

e.g., repeated memory allocation and deallocation steps. R-Drive is a write-intensive storage system, so it is important to

observe whether the R-Drive application causes memory bloating issues over an extended runtime. For this experiment,

we used a 20MB file and 1MB block size with (𝑘, 𝑛) values of (10,20). Table 3 shows the average heap object allocation

and deallocation during file creation and file retrieval for variable iterations. The number of dangling objects starts to

increase over time as the number of file creations/retrieval increases but remains relatively small.

5.6.2 Processing. We measured processing time for components responsible for encryption key generation (Shamir),

data encryption (AES), and data erasure coding (Reed-Solomon), as shown in Table 5. We conducted experiments for

variable block sizes such as 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, and 80MB and computed the percentage of

average read and write delay for each component.

We also measured the average execution time for Algorithm 1 on a Samsung S8 Android device by running the

algorithm over 1000 iterations for network sizes of 30, 20, and 10 devices. The average algorithm execution times were

101.6, 15.3, and 0.5msec, respectively, indicating the relatively low execution time overhead.

Manuscript submitted to ACM

DistressNet-NG: A Resilient Data Storage and Sharing Framework 27

Table 5. Processing overhead as a percentage of total delay

Shamir AES Reed-Solomon
Read 5% 87% 8%

Write 3% 84% 13%

(a) (b)

Fig. 26. DistressNet-NG performance under unstable network conditions: a) RDrive data storage write/read success rate; and b)
RShare data delivery success rate

5.6.3 Energy. For this experiment, we started with 100% energy in each phone and ran DistressNet-NG application

suit until the phones turned off due to battery exhaustion. We used Battery Historian [4] to collect Android battery

usage data from Android devices after each experiment run. In each device, we ran EdgeKeeper, RSock, and R-Drive,

along with a client application that continuously performed random file creation and retrieval in the R-Drive system.

From the results, shown in Table 4 we infer that, if similar devices are used in the field, first responders may need to

switch the device battery after approximately 3.5 hours. However, with newer Android devices with higher battery

capacity, the runtime may increase.

5.7 Real-world experiments with Varying link quality

Figure 26 shows the results from the UAV-based deployments conducted in Fort Collins where we ran experiments to

assess the effect of dynamic network conditions on DistressNet-NG’s performance. In six different test flights (F1-F3)

we measured R-Drive’s read/write performance in the cluster where the success rates are below 100% ranging from

close to 4% (almost disconnected network) to 83% (random disconnections). RShare also showed data delivery rates

between 40% and 90% across three different test scenarios (S1-S6) of the deployment. This indicates challenges in edge

formation during UAV-based deployment where the network condition is truly dynamic. Success rates varied, but a

reasonable success ratio suggests that our applications are stable even in hostile network environments.

5.8 Comparison with State-of-the-Art

To the best of our knowledge, DistressNet-NG is the only end-to-end edge system that supports resilient data storage

and sharing designed particularly for disconnection-prone mobile edge environments. Below we present a qualitative

comparison of data storage between DistressNet-NG system with the state-of-the-art MDFS [14, 15].

• MDFS reliability estimated analytically, not from experimental data, is presented in Figure 8. MDFS shows a

proportional relation between reliability and code rate, without considering other variables such as network

condition or node availability. In this manuscript, we distinguish network, directory service, and data storage

resilience by separate components, namely RSock, EdgeKeeper and R-Drive, and evaluate their individual

contributions to reliability, using table-top and deployment experiments.

Manuscript submitted to ACM

28 Sagor, et al.

• Although MDFS attempts to choose optimal 𝑘 and 𝑛 values for file storage, it does not provide any guidance

on selecting 𝑛 candidate nodes, when considering available storage capacity or health status such as remaining

battery time; we address these factors in R-Drive during node selection process.

• MDFS topology discovery is a flooding based protocol where every node floods the network with beacon message

every 30sec to announce their presence, whereas, in DistressNet-NG, topology/network discovery is handled via

EdgeKeeper, taking advantage of both network discovery, as well as a consensus protocol, ensuring that it does

not congest the network in edge environment.

• MDFS does not maintain a distributed directory service, hence each device’s view of the available files can be

different, whereas EdgeKeeper maintains a distributed directory service for all node with a consistent view of

the available files.

6 CONCLUSIONS

The use of MEC in CPS has been increasing in popularity, particularly in the fields of Disaster Response and Tactical

applications. These applications generate a substantial amount of mission-critical and personal data that require resilient

and secure storage and sharing. The presented framework is designed, implemented, and evaluated to show that it ensures

resiliency in storing critical data and fast reorganization of the CPS. The framework ensures resilient communication

among the nodes forming the CPS by deciding an optimal degree for replicating data that is communicated over lossy

links, thereby ensuring reliable communication. R-Drive employs an adaptive erasure-coded and encrypted resilient

data storage and sharing mechanism while adaptively choosing erasure-coding parameters to ensure the highest data

availability with a minimal storage cost. R-Share is a secure and resilient data-sharing application for peer-to-peer

communication over the opportunistic networking module RSock. The proposed framework has been successfully

implemented on Android devices and integrated with existing MEC applications, demonstrating their effectiveness in

enabling resilient data storage and sharing for CPS applications. The performance evaluation results show that the

framework offers a reliable and efficient solution for data storage and sharing providing a high level of data availability

while reducing storage costs, as well as a seamless data-sharing experience with negligible delay. For future work, we

aim to investigate how to transfer fragments from one vulnerable device to a safe one over an opportunistic network

before device failure takes place and data becomes lost/unavailable. Moreover, we aim to make EdgeKeeper network

topology management more robust by incorporating a network service discovery protocol JmmDNS, so that multiple

edge networks can advertise themselves over the same network.

REFERENCES
[1] IBR-DTN - A Modular and Lightweight Implementation of the Bundle Protocol. https://github.com/ibrdtn/ibrdtn, 2023.

[2] Alenazi, M. J. F., Cheng, Y., Zhang, D., and Sterbenz, J. P. G. Epidemic Routing Protocol Implementation in Ns-3. In Proceedings of the 2015
Workshop on Ns-3 (2015), p. 83–90.

[3] Altaweel, A., Yang, C., Stoleru, R., Bhunia, S., Sagor, M., Maurice, M., and Blalock, R. RSock: A resilient routing protocol for mobile fog/edge

networks. Ad Hoc Networks 134 (2022).
[4] Android. Battery Historian. https://developer.android.com/topic/performance/power/setup-battery-historian, 07 2021.

[5] Apache. ZooKeeper Programmer’s Guide. https://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html, 6 2022.

[6] Apache. Storm. https://storm.apache.org/, 2023.

[7] ArcGIS. Survey123. https://survey123.arcgis.com/, 2023.

[8] Baicells. Baicells Nova 227 eNB. https://na.baicells.com/product/Details?id=c7b62a86-c748-4b71-aeb4-3f01bed0b026, 2023.

[9] Beach, B. Backblaze Reed-Solomon Erasure Coding Source Code. https://www.backblaze.com/blog/reed-solomon/, 6 2015.

[10] Berlin, F. Implementation of Optimized Link State Routing protocols for Mobile Ad-Hoc Networks. https://github.com/OLSR/olsrd, 2023.

[11] Bhunia, S., Stoleru, R., Haroon, A., Sagor, M., Altaweel, A., Chao, M., Maurice, M., and Blalock, R. EdgeKeeper: Resilient and Lightweight

Coordination for Mobile Edge Clouds. In IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS) (2022).

Manuscript submitted to ACM

https://github.com/ibrdtn/ibrdtn
https://developer.android.com/topic/performance/power/setup-battery-historian
https://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html
https://storm.apache.org/
https://survey123.arcgis.com/
https://na.baicells.com/product/Details?id=c7b62a86-c748-4b71-aeb4-3f01bed0b026
https://www.backblaze.com/blog/reed-solomon/
https://github.com/OLSR/olsrd

DistressNet-NG: A Resilient Data Storage and Sharing Framework 29

[12] Bulut, E., Geyik, S. C., and Szymanski, B. K. Utilizing correlated node mobility for efficient dtn routing. Pervasive Mob. Comput. 13 (2014), 150–163.
[13] Chao, M., and Stoleru, R. R-MStorm: A resilient mobile stream processing system for dynamic edge networks. In 2020 IEEE International Conference

on Fog Computing (ICFC) (2020), pp. 64–72.
[14] Chen, C.-A., Stoleru, R., and Xie, G. G. Energy-efficient load-balanced heterogeneous mobile cloud. In 2017 26th International Conference on

Computer Communication and Networks (ICCCN) (2017), pp. 1–9.
[15] Chen, C.-A., Won, M., Stoleru, R., and Xie, G. G. Energy-Efficient Fault-Tolerant Data Storage and Processing in Mobile Cloud. IEEE Trans. Cloud

Computing 3, 1 (2015), 28–41.
[16] Chenji, H., Zhang, W., Stoleru, R., and Arnett, C. Distressnet: A disaster response system providing constant availability cloud-like services. Ad

Hoc Networks 11, 8 (2013), 2440–2460.
[17] Clausen, T. H., Dearlove, C., Jacqet, P., and Herberg, U. The optimized link state routing protocol version 2. ietf rfc 7181, 2014.

[18] Dropbox. Dropbox. https://www.dropbox.com/?landing=dbv2, 2023.

[19] Dwyer, D., and Bharghavan, V. A Mobility-Aware File System for Partially Connected Operation. ACM SIGOPS Operating Systems Review (1997).

[20] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google File System. In Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP) (2003), pp. 29–43.

[21] Google. Google Backup and Sync. https://support.google.com/drive/answer/2374987, 2023.

[22] Google. Google Drive. https://www.google.com/drive/, 2023.

[23] Google. Google Files. https://www.google.com/drive/, 2023.

[24] Haroon, A., Sagor, M., Maurice, M., Jin, L., Stoleru, R., and Blalock, R. On edge coordination in highly dynamic cyber-physical systems for

emergency response. In 2022 Workshop on Cyber Physical Systems for Emergency Response (CPS-ER) (2022), IEEE, pp. 7–12.
[25] Hui, P., Crowcroft, J., and Yoneki, E. Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE transactions on mobile computing 10,

11 (2010), 1576–1589.

[26] Jabbar, W. A., Saad, W. K., and Ismail, M. Meqsa-olsrv2: A multicriteria-based hybrid multipath protocol for energy-efficient and qos-aware data

routing in manet-wsn convergence scenarios of iot. IEEE Access 6 (2018), 76546–76572.
[27] Kacem, I., Sait, B., Mekhilef, S., and Sabeur, N. A new routing approach for mobile ad hoc systems based on fuzzy petri nets and ant system. IEEE

Access 6 (2018), 65705–65720.
[28] Laboratory for Embedded and Networked Smart Systems (LENSS) GitHub. EdgeKeeper, RSock, R-Drive and R-Share source code. https:

//github.com/LENSS/EdgeKeeper, https://github.com/LENSS/RSock, https://github.com/LENSS/MDFS, https://github.com/LENSS/R-Share, 2023.

[29] Li, Z., and Shen, H. A QoS-oriented distributed routing protocol for hybrid wireless networks. IEEE Transactions on Mobile Computing 13, 3 (2014),
693–708.

[30] Lindgren, A., Doria, A., Davies, E., and Grasic, S. Probabilistic Routing Protocol for Intermittently Connected Networks. IRTF RFC 6693, 2012.

[31] Ltd, S. T. C. SHAREit. https://shareit.en.softonic.com, 2023.

[32] Marinelli, E. E. Hyrax: Cloud computing on mobile devices using MapReduce. Tech. rep., Carnegie-Mellon University Pittsburgh PA School of

Computer Science, 2009.

[33] Microsoft. Onedrive. https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage, 2023.

[34] Otto, G. DHS sees wearables as the future for first responders. https://www.fedscoop.com/dhs-wearables-first-responders/, 2014.

[35] Paiker, N. R., Shan, J., Borcea, C., Gehani, N., Curtmola, R., and Ding, X. Design and Implementation of an Overlay File System for Cloud-Assisted

Mobile Apps. IEEE Transactions on Cloud Computing 8, 1 (2017), 97–111.
[36] Pamboris, A., Andreou, P., Polycarpou, I., and Samaras, G. FogFS: A Fog File System For Hyper-Responsive Mobile Applications. In 2019 16th

IEEE Annual Consumer Communications & Networking Conference (CCNC) (2019), IEEE, pp. 1–6.
[37] Rahman, A., Hassanain, E., and Hossain, M. S. Towards a Secure Mobile Edge Computing Framework for Hajj. IEEE Access 5 (2017).
[38] Reed, I. S., and Solomon, G. Polynomial Codes Over Certain Finite Fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),

300–304.

[39] Sagor, M., Stoleru, R., Haroon, A., Bhunia, S., Chao, M., Altaweel, A., Maurice, M., and Blalock, R. R-drive: Resilient data storage and

sharing for mobile edge clouds. In 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS) (2022), pp. 171–179.
[40] Schildt, S., Morgenroth, J., Pöttner, W.-B., andWolf, L. IBR-DTN: A Lightweight, Modular and Highly Portable Bundle Protocol Implementation.

ECEASST 37 (01 2011).

[41] Scotece, D., Paiker, N. R., Foschini, L., Bellavista, P., Ding, X., and Borcea, C. MEFS: Mobile edge file system for edge-assisted mobile apps. In

2019 IEEE 20th International Symposium on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM) (2019), IEEE.
[42] Shamir, A. How to share a secret. Communications of the ACM 22, 11 (1979), 612–613.
[43] Sharma, A., Tie, X., Uppal, H., Venkataramani, A., Westbrook, D., and Yadav, A. A Global Name Service for a Highly Mobile Internetwork. In

ACM SIGCOMM Computer Communication Review (2014), vol. 44, ACM, pp. 247–258.

[44] Shu, Y., Dong, M., Ota, K., Wu, J., and Liao, S. Binary Reed-Solomon Coding Based Distributed Storage Scheme in Information-Centric Fog

Networks. In 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (2018),
IEEE, pp. 1–5.

[45] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST) (2010), IEEE, pp. 1–10.

Manuscript submitted to ACM

https://www.dropbox.com/?landing=dbv2
https://support.google.com/drive/answer/2374987
https://www.google.com/drive/
https://www.google.com/drive/
https://github.com/LENSS/EdgeKeeper
https://github.com/LENSS/EdgeKeeper
https://github.com/LENSS/RSock
https://github.com/LENSS/MDFS
https://github.com/LENSS/R-Share
https://shareit.en.softonic.com
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.fedscoop.com/dhs-wearables-first-responders/

30 Sagor, et al.

[46] Xia, M., Saxena, M., Blaum, M., and Pease, D. A. A Tale of Two Erasure Codes in HDFS. In 13th USENIX Conference on File and Storage Technologies
(FAST) (2015).

[47] Yen, J. Y. Finding the K Shortest Loopless Paths in a Network. Management Science 17, 11 (1971), 712–716.
[48] Zhang, M., Bai, Y., Yuan, S., Tian, N., and Wang, J. Design and Implementation of File Multi-Cloud Storage System Based on Android. In 2020

IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (2020).
[49] Zhu, R., Niu, D., and Li, Z. Online Code Rate Adaptation in Cloud Storage Systems with Multiple Erasure Codes. In 28th Biennial Symposium on

Communications (BSC 2016) (2016).

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 State of the Art
	3 DistressNet-NG Framework Design
	3.1 EdgeKeeper - Resilient Coordination
	3.2 RSock - Resilient Communication
	3.3 R-Drive/R-Share - Resilient Data Storage and Sharing

	4 DistressNet-NG Framework Implementation
	5 Performance Evaluation
	5.1 R-Drive Resilience through Adaptive Erasure Coding
	5.2 Directory Service Resilience
	5.3 Communication Resiliency with RSock
	5.4 R-Drive Data Storage Throughput
	5.5 R-Share Data Throughput and Delay
	5.6 Framework Overhead
	5.7 Real-world experiments with Varying link quality
	5.8 Comparison with State-of-the-Art

	6 Conclusions
	References

