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Abstract. As the internet plays an increasingly vital role in our daily
lives, the threat of denial of service (DoS) attacks continues to loom, pos-
ing significant challenges to network security. With the proliferation of
internet-of-things (IoT) devices, including those in the healthcare sector
(IoMT), the need to secure these networks becomes even more critical.
The emergence of Mobile Edge Computing (MEC) servers has shifted the
focus toward processing data near the network edge to alleviate network
congestion. However, a new form of DoS attack, known as the crossfire
attack, presents a complex challenge as it is difficult to detect and can
have devastating effects on networks. While Software Defined Networks
(SDNs) offer promise in mitigating DoS attacks, they also introduce vul-
nerabilities of their own. This paper explores the current landscape of
IoT, IoMT, DoS attacks, and crossfire attacks. It discusses existing de-
fense strategies and proposes a defense mechanism that leverages packet
header inspection to differentiate between adversarial and benign pack-
ets. The paper concludes with the execution of a crossfire attack in a
Mininet environment with the RYU SDN controller, highlighting the
need for multiple approaches to protect critical servers in the face of
persistent DDoS attacks.
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1 Introduction

As the internet continues to evolve and become more essential to daily lives
than ever, there is a growing population looking to destroy it. Denial of service
(DoS) attacks have been a threat to the internet for years and continue to cause
issues even in today’s networks. The continued improvement and introduction
of internet-of-things (IoT) devices have pushed mobile carriers to update their
existing infrastructure to support the increased number of devices. With the
use of Internet of Medical Things (IoMT) servers, securing the network has
become even more critical. If an adversary were to disrupt the operations of
IoMT devices, entire hospitals and healthcare networks may be affected, leading
to disastrous, if not deadly consequences. Due to the increased load on the
network, a focus on Mobile Edge Computing (MEC) has increased. These MEC
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servers keep data from going across the center of the network and instead process
the data near the edge of the network. A newer type of DoS attack, known as the
crossfire attack has plagued the internet. This type of attack is extremely difficult
to detect and can be lethal to networks if executed correctly. Software defined
networks (SDNs) have been discussed as a promising mitigation technology that
could detect DoS attacks. While SDNs are helpful, they are not perfect and open
up a different set of vulnerabilities to exploit. The end of DDoS attacks is not in
sight, and therefore many different approaches must be taken to protect critical
servers.

About 25 billion devices are currently interconnected and by 2025, 60 billion
devices are expected to be connected [3]. As the Internet continues to develop,
traditional devices are becoming “smart”, meaning that they are connected to
the Internet. The term “Internet of Things”(IoT) was coined in 1999 by Kevin
Ashton which describes a global network of interconnected devices [3]. The mo-
tivation for IoT devices is to create large “smart” systems [8]. Technological
advancements are the reason for the increased motivation to link devices to-
gether [3]. IoT devices take many forms and almost any traditional device can
be converted to a smart device. Some examples of IoT devices include smart
plugs, smart washing machines, smart lights, smart refrigerators, etc. The In-
ternet of Medical Things (IoMT) is an extension of the IoT with a focus on
medical devices. These IoMT devices are medical things that have the capabil-
ity to transfer information across a network without requiring human-to-human
or human-to-computer interaction. These devices enable physicians to diagnose
illnesses more easily by connecting various vital parameters using IoMT monitors
[16].

The crossfire attack is a type of DoS attack that is more difficult to de-
tect. This attack uses many devices across large geographic regions to send low-
intensity requests across the network to various servers on the other side of the
network. This is especially problematic with the advent of IoT and IoMT, be-
cause even though these devices often have extremely limited processing power,
these devices can be compromised and used since the attack only requires low-
intensity attacks to be sent from any given device.

Previous works seek to defend against these crossfire attacks using vari-
ous methodologies. Routing around congestion (RAC) attempts to mitigate the
crossfire attack by changing routing decisions based on the congestion of a given
link. This solution, though also slows down legitimate traffic as all traffic is routed
around that congestion. If an adversary was able to force routing decisions to
consistently change, packets may be dropped as the network tries to continually
determine the best route but is unable to do so. Another defense strategy, mov-
ing target defense (MTD) seeks to make the scanning phase of the attack more
difficult by randomly updating routes so that an adversary would not be able to
identify a consistently shared link between nodes in the network. This approach
also suffers from the fact that oftentimes these routes are non-ideal, meaning
legitimate traffic is degraded at the expense of security.

The summary of contributions are:
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– The paper proposes a statistical detection model for crossfire attacks using
Analysis of Variance (ANOVA) and neural networks.

– The proposed mechanism only uses packet headers and not packet content
to determine if a packet is adversarial that achieves an accuracy of 95.3% in
detecting these packets

– We evaluated the proposed defense mechanism on a real-world network topol-
ogy from the ATT North America backbone topology using the Mininet
simulation environment

The rest of the article is organized as follows: Section 2 discusses some back-
ground information about IoT, IoMT, DoS attacks, and crossfire attacks. Sec-
tion 3 details the threat model of the attack. Section 4 discusses defense strate-
gies against the crossfire attack. Section 5 Shows the execution of the crossfire
attack.

2 Background

This section discusses the essential knowledge required to successfully execute
a crossfire attack, a critical aspect of modern network security. It explores key
networking concepts, including the revolutionary 6G technology, the Internet
of Things (IoT) and Internet of Medical Things (IoMT), Mobile Edge Com-
puting, and the pervasive security concerns surrounding these advancements.
Moreover, it provides a comprehensive examination of the crossfire attack itself,
shedding light on its intricacies and implications for network defenses. By thor-
oughly examining these interconnected topics, this section aims to contribute
to the understanding and mitigation of cyber threats in contemporary network
environments

2.1 6G

5G/6G Architecture Until recently, mobile communication was handled by
fourth-generation (4G) and Long Term Evolution (LTE) systems. Recently with
the rise of Internet of Things (IoT) devices and a larger focus on edge comput-
ing, a new standard had to be created in order to support the rapidly growing
Internet. Fifth-generation (5G) is the next standard of mobile communication
that will be able to support such a wide variety of devices simultaneously. 5G
services are attempting to meet 3 main constraints as it develops: ubiquitous
connectivity, zero latency, and high-speed gigabit connections [11].

Network Architecture As the number of mobile devices exponentially in-
creases, there is a need for an architecture redesign from the previous generation.
Differences in the waves used for 5G that permit increased speed require careful
consideration due to differences in propagation.

5G cellular network architecture is distinct from previous generations but
retains many features of those generations. A renewed focus on interior architec-
ture is necessary. With 4G, an outdoor base station had the ability to allow both
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inside and outside users to communicate. Due to the constraints and changes in
architecture, the shorter waves of 5G cannot penetrate walls as easily [5]. There-
fore, 5G architecture must consider distinct interior architecture to overcome
the issue of penetration loss [17]. The use of multiple-input, multiple-output
(MIMO) technology can help reduce the burden of penetration loss.

2.2 IoT and IoMT
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Fig. 1: The 4 Layer IoT Architecture

The Internet of Things has its own distinct architecture that works with the
Internet. Typically IoT is categorized into 4 layers. Figure 1 details the types of
devices that are present on each layer. The perception layer is the lowest level of
the IoT architecture. The perception layer contains the sensor-enabled physical
objects which act as endpoints to the IoT ecosystem. The next layer, the network
layer, consists of various communication protocols, edge computing, and network
connectivity. This layer transfers information securely from IoT end-points to a
processing device. The middleware layer receives data from the network layer
and stores it in a database. Cloud computing servers and database management
systems are typically middleware devices that allow applications and sensors to
connect. Finally, the top layer of the four-layer IoT architecture is the application
layer. This layer IoT exists as a result of many technologies. These technologies
work together to create a holistic system that is able to communicate across the
internet. Radio frequency identification (RFID) was a large precursor to IoT as
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it allowed machines to record metadata, recognize objects, and control devices
through radio waves [8]

2.3 Mobile Edge Computing

Mobile edge computing (MEC) is an architecture where cloud computing services
are placed on the edge of the network using mobile base stations [1]. With the
ever-increasing need for cloud computing services while using mobile devices,
placing computing servers within the radio access network (RAN) and in close
proximity to these devices allows mobile traffic to connect to the nearest cloud
service edge network. By placing MEC services within the the RAN, bottlenecks
associated with traveling through the core of the internet can be reduced [1].
The European Telecommunications Standards Institute characterizes MEC by
the following criteria: [12]

1. On-Premises - The edge services should be located at the edge of the network,
meaning it should be able to run isolated from the core of the network

2. Proximity - By being close to the source of the data/information, MEC is
useful for analytics and data collection

3. Lower Latency - By being closer to the edge devices, latency is considerably
reduced. This can be used to reduce latency or improve user experience.

4. Location Awareness - When connected to WiFi or cellular, services can use
low-level signaling to determine the location of connected devices.

5. Network Context Information - Real-time network statistics can be used by
applications to provide context-specific services that can be monetized and
change the experience of mobile communication.

Mobile edge computing can be used in many sectors to offload core services.
Augmented reality (AR) systems typically require high computational power.
Many users use (AR) on their mobile devices, so computations have to be of-
floaded to servers. Edge computing would allow these high-demand, low-latency
tasks to remain at the edge of the network [1]. Edge computing also will play a
key role with respect to web performance and caching HTML content. By deploy-
ing content delivery servers at the edge, HTTP requests would travel through
these servers that would handle many of these requests, reducing traffic across
the core network [1]. MEC services allow 5G to continue to work towards the
core goal of “zero-latency” as reducing congestion in the core allows more traffic
to be routed. This in turn improves the experience for users of 5G technology.

2.4 Security Concerns

IoT and IoMT devices may provide useful services, however, they currently
present a large security problem in the world of networking. The first concern
that arises with the introduction of IoT is that creating additional devices that
are addressable can allow attackers to intrude [8]. Security measures are only as
good as the weakest link, and the introduction of new devices opens the door to
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additional vulnerabilities that could be exploited by an adversary. Due to the low
cost of IoT devices, corners may be cut in terms of manufacturing. Oftentimes,
IoT devices may use default or anonymous logins which an adversary can use to
intrude on a network [13]. These concerns are magnified in healthcare settings. If
sensors are compromised, they may report false data, or no data at all leading to
misdiagnoses, or in the worst case, a patient unable to call for medical staff in a
time of emergency. Therefore, it is necessary that additional security and safety
measures are in place to prevent these critical devices from failing or becoming
compromised.

2.5 Crossfire Attack
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Fig. 2: Execution of the crossfire attack

The crossfire attack is a type of Link Flooding attack that attempts to de-
grade or disable connections to a specific geographical region of the internet.
This attack is perpetuated by directing low-intensity requests to various public
servers that share a common link to flood that shared link. The attack uses mul-
tiple attacking nodes, each sending low-intensity traffic to different destination
nodes. This type of attack does not affect one specific destination, instead, it
targets a large geographical region, served by the target link node. This type
of attack is devastating to a specific geographical region, as both upstream and
downstream traffic is affected [7]. The crossfire attack is more difficult to detect,
as crossfire is an indirect attack, contrary to most other attacks. Since the attack
spreads low-intensity traffic to various destinations, this allows the attack traffic
to blend in with legitimate traffic and is virtually undetectable in standard DoS
detection and mitigation protocols, at least until after substantial damage has
been done [7].
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To execute a crossfire attack, first, a potential adversary would select a list
of public servers within the targeted areas and a set of decoy servers away from
the target area. Since these servers are publicly accessible, they can be easily
found. Next, the adversary would have to perform recognisance and generates
a link map. This link map would be a map of layer 3 links that connect their
decoy servers to public servers. The map enables the adversary to select a set of
“target servers” that when flooded, would be able to cut off the target area from
the open internet. The adversary then coordinates the decoy servers to flood the
target link, effectively blocking most flows to the target area. Each individual
server sends low-intensity traffic so as to not arouse suspicion of anomaly-based
detection system. The individual low-intensity flows are indistinguishable from
legitimate traffic. Finally, the adversary begins to flood each target link one at
a time to not trigger automatic packet route mutation [7].

2.6 Related Works

MTD One proposed crossfire defense solution is the moving target defense
(MTD). Traditional networks are static in nature, allowing attacks to spend as
much time as needed to gather information and find vulnerabilities [4]. MTD
has historically been a warfare strategy but recently has been adopted into the
IT world. A moving target defense can first delay network mapping and recon-
naissance. ICMP and UDP scans can be disrupted by imposing fake hosts and
services on random ports that do not exist. The fake listeners can increase the
time and workload an attacker would need in order to launch an attack [6]. Addi-
tionally, a mutable network can be created that changes IP addresses and ports
of network hosts dynamically. This means that machines will not be able to be
located at the same address at any given time [4]. Oftentimes, MTD takes the
form of random route and address mutations. Randomization has been a com-
mon strategy in moving target defenses. This strategy is based on the idea that
if addresses of targets within the network constantly change or access policies
between the attacker and target change, then the attack success rate will dras-
tically reduce. An attacker’s ability to effectively do reconnaissance is sharply
diminished as well due to the ever-changing network landscape [6]. Obfuscation
of links via SDN has also been proposed to confuse and thwart attackers [2]. By
obfuscating links between the attacker and target, an adversary would not be
able to identify common links, a key step in performing a crossfire attack.

Rerouting-Based Defenses Moving target defense can also be used to create
virtual “routable IPs”. While the real IPs of hosts remain unchanged and static,
the virtual IPs assigned by the network consistently changed frequently and
synchronously. However, the higher the rate of mutation, the more overhead is
required to run the network [4]. This type of approach is often used by load-
balancers to send traffic to different destinations depending on network load.

Another proposed way to mitigate large-scale DDoS attacks is by using a
routing around congestion (RAC) defense. The RAC defense works by routing
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traffic between a service deployer and a critical autonomous system around de-
graded links. RAC defense asserts that attack traffic is irrelevant and does not
need to be filtered when using this defense [14]. The RAC defense offers path
isolation by dynamically creating detour routes for critical flow [15].

Infeasibility of Current Mitigation Techniques While the proposed de-
fense solutions may work in theory, they are infeasible in nature. Rerouting-
based defenses like RAC are not feasible in production servers. RAC defense
uses border gateway protocol poisoning to avoid specific autonomous systems.
The current border gateway protocol is incompatible and may not be able to be
updated in such a way as to make this defense feasible. Even so, if this defense
were made possible, it could be misused with malicious intent to attack au-
tonomous systems [15]. Rerouting-based defense may also be able to be hijacked
to force rerouting constantly. This in practice may cause packets to get dropped
or delayed. Additionally, the aforementioned overhead required to implement a
moving target defense may not be practical on large-scale networks.

Current Detection Efforts Current defense mechanisms treat both legitimate
and attack traffic the same, degrading the performance of legitimate users. Cur-
rent attack traffic detection methods point to detecting DoS and DDoS attacks,
not link-flooding attacks. These detection efforts often rely on traffic being di-
rected to a singular end-point. Therefore, models that detect standard DoS and
DDoS attacks may not be able to accurately detect crossfire attack traffic.

One study, Narayanadoss et al. [10] proposes a deep-learning model to detect
crossfire attacks in intelligent transport systems. This study provides a machine-
learning-based model to detect vehicles in a network that are involved in the
attack. The created models reflected a detection rate of 80% in a network of 35
nodes [10]. This model includes data irrelevant to traditional networks (vehicle
speed) that may impact the model’s accuracy in networks that are not intelli-
gent transport systems. Additionally, as the network grew, detection accuracy
decreased. Only a maximum of 35 nodes were implemented. As noted by the
author, as the number of nodes increased, “[m]any legitimate flows could be
detected as part of attacking traffic as they may have a temporal correlation
with other attacking flows” [10]. This model may prove infeasible in larger net-
works, such as networks in large cities. Beyond this singular model, significant
work has not been done to detect crossfire attacks and classify traffic based on
characteristics.

3 Threat Model

To successfully execute a crossfire attack, adversaries must be able to mask
malicious traffic behind legitimate traffic to avoid detection by the system. The
aforementioned mitigation techniques focus on adversaries using the same attack
nodes repeatedly. If an adversary were to have a botnet sufficiently large, they
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would be able to slowly introduce attack nodes into the attack, and remove
attack nodes that have become ineffective. By staying within the confines of
thresholds, an attack could be executed for longer without being detected.

During the reconnaissance phase of the attack, an adversary would use mul-
tiple attack nodes to execute trace route commands. These commands would be
done at low intensity, and low rate to avoid route mutation from the SDN. By
spreading out these trace route commands, common links can be discovered and
mapped with minimal error due to route mutation. This would allow the ad-
versary to create a route map, and understand where secondary nodes are used
when the primary link is being flooded. For maximum efficiency, the adversary
would choose a time during routine peak demand, as SDNs would anticipate this
stress on the system, and additional strain may be attributed to regular demand
fluctuations.

Once launching the attack, the nodes would monitor the route of the low-
intensity traffic to destination servers, to ensure that the traffic is being routed
through the link node. If a node determines that it has been rerouted, it shall
continue directing traffic to the target node, and wait before disconnecting and
changing targets. This can prevent the ”common denominator” defense. The
moving target defense can be leveraged in itself to disrupt legitimate traffic. By
forcing the SDN to continually change routes, legitimate traffic can be slowed
down beyond usability.

The adversary would not launch all attack nodes at once, as this may cause
a spike in demand, which the system would detect. Instead, the adversary would
gradually increase attack nodes in order to mask the increase in demand as
organic demand, thereby potentially circumventing anomaly-based detection [7].

As the attack propagates on the network, constant monitoring of network
routing would be required. As the system responds to the attack, we would
monitor the change in performance during route mutation, and when the attack
is taking place undetected. This would allow for the practicality of leveraging
route mutation-based mitigation to be measured.

4 Defense Mechanism

Since crossfire attacks are so lethal, it is important to detect when they are oc-
curring as soon as possible. Therefore, using a software defined network (SDN)
is ideal so that a holistic view of the network can be obtained. The use of SDN
is proposed as an ideal approach to obtain a holistic view of the network. In
an SDN, the control plane is decoupled from the data plane, allowing central-
ized control and management of the network. The SDN architecture consists
of OpenFlow switches that forward network traffic based on instructions re-
ceived from the SDN controller. Each OpenFlow switch in the network reports
the packet headers of incoming packets to the SDN controller. Packet head-
ers contain important information such as source and destination IP addresses,
transport protocol, port numbers, etc. By inspecting these headers, the SDN
controller can gain visibility into the network and analyze the characteristics of
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Fig. 3: Defense Mechanism

the packets flowing through it. To defend against crossfire attacks, a traffic clas-
sification model is proposed to determine whether a packet is adversarial (part
of the attack) or benign. This model is implemented on the SDN controller. It
leverages machine learning or rule-based techniques to analyze the packet head-
ers and make an informed decision about the nature of the packet. The SDN
controller sends the packet headers to a cloud-based IDS for further analysis. The
IDS hosts the proposed traffic classification model, which evaluates the received
packet headers and determines if they correspond to an adversarial or benign
packet. The IDS is equipped with computational resources and advanced anal-
ysis techniques to perform this task effectively. Once the IDS determines that
a packet is adversarial, the SDN controller instructs the respective OpenFlow
switch to drop the offending packet(s) from the processing pipeline. By discard-
ing the malicious packets, congestion on the network can be reduced, preventing
the crossfire attack from spreading further. In summary, this defense mechanism
combines the capabilities of SDN, packet header inspection, a traffic classifica-
tion model, and a cloud-based IDS to detect and mitigate crossfire attacks. By
inspecting packet headers, identifying adversarial packets, and dropping them
in real time, the mechanism helps protect the network from the detrimental ef-
fects of crossfire attacks, minimizing potential damage and maintaining network
performance. Figure 3 details the mechanism.
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5 Experiment Setup

The execution of a crossfire attack, in theory, appears straightforward. By flood-
ing a specific link, the attacker aims to overwhelm it with traffic. This process
involves identifying potential routes that utilize the targeted link and generating
low-intensity requests across those routes to flood the link effectively. However,
in practice, executing a crossfire attack can be challenging due to the limited
availability of information regarding the specific routes taken by packets. The
lack of public access to this crucial routing data presents a significant hurdle
for attackers attempting to orchestrate such attacks. In this section, we delve
into the intricacies of executing a crossfire attack, exploring the methodologies
used to overcome these obstacles and the implications of this type of attack on
network performance and security.
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Fig. 4: Test Network Diagram [9]

Our crossfire attack was executed on a network simulated by the MiniNet
network simulator and the RYU SDN controller. These tools allowed for the
creation and management of a virtual network environment for experimentation
and analysis. To set up the network, a python script was employed, which uti-
lized the ATT North America Backbone network from The Internet Topology
Zoo [9] as the basis for the network configuration. The network topology, as
depicted in Figure 4, provides a visual representation of the structure and inter-
connections of the various network components. It showcases the arrangement
of links within the simulated network. To introduce additional functionality and
explore specific scenarios, a Mobile Edge Computing (MEC) server was strategi-
cally placed between the ORLD and CLEV nodes. The MEC server served as a
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centralized computing platform that brought computing resources closer to the
network edge, enabling efficient processing and analysis of data generated within
the network. In this particular setup, the MEC server had a direct connection
between the ORLD and CLEV nodes, facilitating seamless communication and
data exchange between them. The choice of the ATT North America Backbone
network from The Internet Topology Zoo [9] was driven by its complexity and
size, which allowed for a more realistic simulation of network traffic. By utiliz-
ing a network with a sufficient number of components and diverse connections,
researchers and analysts could better understand and evaluate the performance,
scalability, and security aspects of network systems under various conditions

5.1 Executing the Attack

Once the network setup is complete, the testing scenario involves a sequence of
events. First, a ping request is sent from the NY54 node, which represents an
external connection, to the MEC (Multi-Access Edge Computing) server. This
initial interaction confirms the connectivity between these nodes.

Following the establishment of the network, servers within the network begin
initiating HTTP connections randomly across the infrastructure. Approximately
80% of the servers are engaged in requesting HTTP resources at any given time.
This random traffic generation simulates unpredictable and legitimate network
activity, replicating real-world usage patterns.

After a period of 30 seconds dedicated to legitimate traffic flows, the attack
commences. Multiple zombie servers, compromised devices controlled by the at-
tacker, start streaming video traffic over TCP (Transmission Control Protocol)
connections to each other. TCP is deliberately chosen for this attack to obscure
the nature of the traffic being transmitted. To further obfuscate the content, the
videos are streamed over HTTPS (Hypertext Transfer Protocol Secure), making
it difficult to distinguish the packets as video traffic based on their packet types.

Each zombie server strategically selects its destinations, ensuring that the
attacking video packets pass through, but do not end at, either the ORLD or
CLEV nodes. This strategic routing aims to block external connections to the
MEC server. Consequently, the switches connecting these networks experience
congestion due to the significant volume of data flowing through each link.

The attack is executed in three phases, with a third of the zombie servers
initiating the attack during each phase. This staged approach helps distribute
the attack traffic and potentially evade detection or mitigation measures.

Throughout the entire process, packet headers are captured using Wireshark,
a widely used network protocol analyzer. Despite the use of HTTPS, which
encrypts the content of the packets, the packet headers remain visible. Therefore,
in this scenario, the network would only have access to information contained in
the packet headers to analyze and identify the attack.
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5.2 Attack Impact

After running the network for 5 minutes, the ping round trip times were collected
and plotted in Figure 5. The moving average was plotted as a line. As the attack
continues, the ping increases on average. During the first stage, the average
ping remained around 50-100ms. Once the zombie servers began attacking, the
average increased to about 500ms. After the second phase, the ping increases
to about 800ms. Finally, during the third phase the ping increases and hovers
around 1500ms.

6 Crossfire Detection

Detecting a crossfire attack directly can be difficult. Since HTTPS encrypts the
packets, the contents of the packets cannot be inspected. Only the headers of
each packet are able to be inspected. Therefore, each model created only analyzes
the headers of the packets and makes decisions based on those headers.

After running the experiment described in Section 5, packet headers were
collected for every packet sent on the network. About 30,000 packets were col-
lected. After the packets were collected, the data was aggregated. First, a stan-
dard Analysis of Variance (ANOVA) was conducted. After conducting the initial
ANOVA,
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6.1 Analysis of Variance (ANOVA)

An analysis of variance was first performed with all the data. The initial ANOVA
gave the results depicted in Table 1 and Table 2. As shown, the largest predictor
of adversarial packets were the window size, the ack rtt, and the time relative.

Table 1: Initial ANOVA Full Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq

Difference 176.18978 12 352.3796 <.0001
Full 408.10276
Reduced 584.29254

Table 2: Initial ANOVA Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq

Intercept Unstable -6.18762050 89752.103 0.00 0.9999
tcp.window size 0.00057399 8.7147e-5 43.38 <.0001
tcp.len -0.00051130 0.0003489 2.150 0.1428
tcp.stream -0.08826740 0.0343179 6.620 0.0101
tcp.flags[0x00000010] Unstable -15.9381260 89752.102 0.000 0.9999
tcp.flags[0x00000011] Unstable 9.78867015 116551.53 0.000 0.9999
tcp.flags[0x00000012] Unstable 12.0348821 117261.45 0.000 0.9999
tcp.flags[0x00000018] Unstable -15.0194920 89752.102 0.000 0.9999
tcp.analysis.ack rtt -63.1695000 7.2849454 75.19 <.0001
frame.time relative 0.11828939 0.0393738 9.030 0.0027
frame.time delta 1.88407238 1.1200274 2.830 0.0925
tcp.time relative 25.6221427 3.1284271 67.08 <.0001
tcp.time delta 3.24388117 4.7044249 0.480 0.4905

After running the original ANOVA, we removed any non-significant factors to
achieve the following ANOVA shown in Table 3 and Table 4. The test as a whole
is able to determine whether or not a packet is adversarial based on the window
size, ack rtt, frame time, and tcp time. This model may not be practical given
a node that consistently has a significant delay. If a node has significant delay,
all packets may be marked as adversarial. Additionally, during an attack, the
delay of packets through the congested links may present a problem where the
model detects all packets as adversarial and blocks essentially all connections,
worsening the effects of the attack.

6.2 Neural Network

A neural network was also created based on all the criteria. The diagram for the
neural network is drawn in Figure 6. The confusion matrices for training and
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Table 3: Revised ANOVA Full Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq

Difference 105.98066 4 211.9613 <.0001
Full 478.31188
Reduced 584.29254

Table 4: Revised ANOVA Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq

Intercept -13.9094560 3.0268445 21.120 <.0001
tcp.window size 0.000396320 6.8154e-5 33.810 <.0001
tcp.analysis.ack rtt -38.0040650 3.7611744 102.10 <.0001
frame.time relative 0.01735100 0.0023833 53.000 <.0001
tcp.time relative 15.8395049 2.3819797 44.220 <.0001

(a) 2× 3 neural network

N1,1

N1,2

N1,25

N2,1

N2,1

N2,1

isAttack

tcp.window_size

tcp.ack

tcp.seq

tcp.len

tcp.stream

tcp.flags

frame.time_relative

frame.time_delta

tcp.time_relative

tcp.time_delta

(b) 2× 25 neural network

Fig. 6: Neural Network Diagrams Using Hyperbolic Tangent Nodes

Table 5: Confusion Matrix for Training
Data for 1× 3 neural network

Predicted
Adversarial Benign

Actual
Adversarial 19206 33

Benign 242 4928

Table 6: Confusion Matrix for Valida-
tion Data for 1× 3 neural network

Predicted
Adversarial Benign

Actual
Adversarial 6373 12

Benign 72 1679

Table 7: Confusion Matrix for Training
Data with 2× 25 neural network

Predicted
Adversarial Benign

Actual
Adversarial 19308 28

Benign 140 4933

Table 8: Confusion Matrix for Valida-
tion Data with 2× 25 neural network

Predicted
Adversarial Benign

Actual
Adversarial 6375 10

Benign 31 1720



N. Perry And S. Bhunia

validation data are pictured in Table 5 and Table 6. The neural network correctly
predicted 99.82% of legitimate packets and 95.3% of attack packets correctly in
the training data. In the validation data, the model correctly identified 99.81%
of legitimate packets and 95.88% of attack packets in the validation data. An
additional neural network was created with 25 nodes by 2 layers, which yielded
negligibly better results. The second model only yields an extremely limited
increase. Tables 7 and 8 Since these devices are IoT devices and have limited
processing power, keeping the neural network model as minimal as possible is
ideal. Therefore, using a smaller model for IoMT devices is the better approach.

7 Conclusion

As the internet continues to evolve and become increasingly essential to daily
lives, the threat of cyber attacks, particularly Denial of Service (DoS) attacks,
looms large. The rise of Internet of Things (IoT) devices, including Internet of
Medical Things (IoMT) devices, has further exacerbated the need for robust
security measures to protect critical networks, such as those in hospitals and
healthcare systems. The advent of Mobile Edge Computing (MEC) servers has
addressed some of the challenges posed by the growing number of IoT devices by
processing data near the edge of the network, reducing the strain on the central
network infrastructure. However, this progress has also introduced new vulner-
abilities that can be exploited by attackers. One of the emerging threats is the
crossfire attack, a sophisticated and difficult-to-detect type of DoS attack. The
crossfire attack targets a specific geographical region by flooding low-intensity
traffic from multiple devices, causing congestion and disrupting network oper-
ations. Traditional DoS detection and mitigation protocols struggle to identify
and counter this type of attack effectively.

While Software Defined Networks (SDNs) have been proposed as a promising
mitigation technology for DoS attacks, they are not without their vulnerabili-
ties and limitations. Therefore, it is crucial to explore multiple approaches and
strategies to protect critical servers from these evolving threats. The security
concerns surrounding IoT and IoMT devices must be addressed to prevent po-
tential intrusions and compromises. The low cost and default login credentials
of many IoT devices make them attractive targets for attackers. Robust security
measures and safety protocols should be implemented to ensure the integrity
and reliability of these critical devices. Moving forward, the adoption of moving
target defense (MTD) strategies, such as route and address mutation, and the
use of obfuscation techniques can enhance network security and make it more
challenging for attackers to carry out crossfire attacks. Rerouting-based defenses
and the deployment of intrusion detection systems that inspect packet headers
can also contribute to the detection and prevention of adversarial packets. As the
number of interconnected devices continues to grow, with an estimated 60 billion
devices expected to be connected by 2025, the importance of securing critical
servers and networks cannot be overstated. Ongoing research and collaboration
among cybersecurity experts, network administrators, and device manufacturers
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are essential to developing effective defense mechanisms and ensuring the unin-
terrupted operation of vital services, particularly in healthcare settings. Overall,
protecting critical servers from DoS attacks, including the evolving crossfire at-
tack, requires a multi-faceted approach that combines advanced technologies,
robust security protocols, and proactive defense strategies. By addressing these
challenges and investing in cybersecurity measures, we can safeguard the in-
tegrity and reliability of the Internet and its essential services for the benefit of
all.
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