
EdgeKeeper: Resilient and Lightweight
Coordination for Mobile Edge Clouds

S. Bhunia, R. Stoleru, A. Haroon, M. Sagor, A. Altaweel, M. Chao, M. Maurice†, R. Blalock†

Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
†National Institute of Standards and Technology (NIST), Boulder, CO, USA

{sbhunia, stoleru, amran.haroon, msagor, altaweelala1983, chaomengyuan}]@tamu.edu
†{maxwell.maurice, roger.blalock}@nist.gov

Abstract—Mobile Edge Clouds (MEC) have been gaining
significant interest from first responders and tactical teams,
primarily because they can employ handheld mobile devices to
form a computing cluster (for high-computation tasks such as
face/scene recognition, and virtual assistance) when connectivity
to the cloud is limited or not possible. High user mobility
in disaster response and tactical environments make MEC
challenging, as wireless links observe substantial fluctuations.
Typical cloud-based coordination (e.g., ZooKeeper-based service
discovery and coordination, device naming, security) cannot
typically work in these environments. Driven by the need for
a resilient and lightweight coordination service, in this paper,
we design and implement EdgeKeeper to provide cloud-like
coordination for MEC systems. EdgeKeeper provides naming,
network management, application coordination, and security to
distributed edge computing applications. It maintains an edge
cluster among devices and intelligently stores its data on a group
of replicas to guard against node failure and disconnections.
We provide a full-system implementation of EdgeKeeper for
Android and Linux platforms. We have integrated EdgeKeeper
with existing MEC applications and performed extensive real-
world performance evaluations in wide-area search and rescue
operations conducted by first responders. Our evaluation shows
EdgeKeeper to be lightweight, resilient and suitable for MEC.

I. INTRODUCTION

Over the past decade, advancements in handheld devices
coupled with data rate enhancements in radio access tech-
nologies have led to an exponential increase in the number
of mobile applications [1], [2]. New applications that gener-
ate large amounts of multimedia data (e.g., videos, images,
and audio), are gaining significant popularity among disaster
response and tactical/military teams. Example use case is auto-
matic human/scene identification/recognition from video cap-
tured through body-mounted cameras or voice assistance [3].
However, these applications require significant resources for
data processing. Traditionally, processing-intensive big data
generated by mobile applications are offloaded to remote cloud
servers for processing. In the absence of connectivity to the
cloud, such as in disaster response and tactical environments,
enabling data processing on mobile devices at the edge
emerges as a necessity [4], [5].

Mobile Edge Cloud (MEC) enables a paradigm shift in data
processing, where jobs are offloaded to the nearest devices in-
stead of sending them to remote cloud servers [6]–[9]. Instead
of treating mobile phones as thin clients, higher computing
power allows us to view them as thick clients or effectively

Fig. 1: A MEC scenario where two edges are formed. Computation
offloading can occur intra-edge and inter-edge.

thin servers. The MEC scenario, shown in Figure 1, becomes
more prominent when a group of mobile nodes loses their
connection to the Internet, and thus to the cloud. In a first re-
sponse scenario a team of first responders is equipped with on-
helmet cameras, mobile devices (e.g., “M-1” through “M-5”
in Figure 1), and a manpack (i.e., “HPC-1” node in Figure 1).
The manpack and mobile devices form a mobile edge that can
be leveraged for sharing computation resources for victim face
detection, face recognition or voice assistance. In the absence
of network infrastructure, the manpack provides LTE and WiFi
connectivity. Similar to the Apache Hadoop [10] ecosystem,
we have developed the DistressNet-NG [11] ecosystem, which
is particularly targeting edge networks formed by handheld
devices and deployable manpacks carried by first responders.

Edge computing applications, such as mobile stream pro-
cessing (e.g., MStorm [5]), require a naming and coordination
service to schedule the execution of tasks. Other edge ap-
plications such as R-Drive [12] require resilient storage for
critical metadata. In the distributed cloud computing frame-
work, Apache ZooKeeper is widely used for service coordi-
nation. However, it requires statically assigned coordination
servers/replicas and fails to provide service as soon as the
majority of the replicas get disconnected. Thus, ZooKeeper in
its current state is not suitable for distributed edge computing.
To fill this gap, we have developed EdgeKeeper, a resilient,
distributed coordination service for mobile edge clouds. It is
implemented as an application that runs in the background on
all edge devices and provides resilient coordination for other
applications, e.g., device naming, application coordination,
edge status monitoring, and authentication. In particular, we



Fig. 2: DistressNet-NG hardware components: a) LTE antenna, b)
WiFi AP, c) LTE eNB, d) Intel NUC that runs LTE EPC and HPC,
e) Battery, f) Body camera, g) Helmet of first responder, h) Handheld
Android phones.

make the following contributions:
• We present the design of EdgeKeeper, a distributed co-

ordination service for mobile edge clouds. EdgeKeeper
is designed to ensure the resilience of coordination in
edge networks while hiding the complexity of edge
coordination from applications.

• EdgeKeeper provides a comprehensive application pro-
gramming interface (API) for client applications which
includes device naming, application coordination, meta-
data storage, authentication for nodes and users, and edge
status monitoring.

• We provide an open-source implementation of Edge-
Keeper for both Linux and Android platforms. We have
integrated an EdgeKeeper client library with applications
such as MStorm, R-Drive, and RSock.

• We present results from real-world deployments with first
responders, which show that EdgeKeeper is lightweight
and suitable for MEC scenarios.

The rest of this paper is structured as follows. Section II
provides the background and motivation of the current work.
The design and implementation of EdgeKeeper are presented
in Sections III and IV, respectively. In Section V we evaluate
the performance of EdgeKeeper. Finally, Section VI concludes
our paper.

II. BACKGROUND AND MOTIVATION

In this section, we first present background material on
DistressNet-NG, an edge computing ecosystem designed for
disaster response teams. Then, we motivate the need for
resilient application coordination (similar to what is needed
in the cloud). In the traditional cloud computing paradigm,
a resource-constrained mobile device offloads computation
tasks to a remote cloud server, but it fails to perform the
required computation when connectivity to the cloud is lost. In
DistressNet-NG, multiple mobile nodes form an edge network
(as in Figure 1) where devices can offload tasks to nearby
mobile devices as well as the cloud server once it is available.

A. DistressNet-NG Hardware Architecture

A group of first responders carries out its search and rescue
mission in a disaster response scenario, assisted by handheld
devices, on-body cameras, and other sensors. As the cellular

Fig. 3: DistressNet-NG edge computing software ecosystem
wireless infrastructure is usually unavailable, these teams carry
a deployable wireless communication system, which typically
consists of the following: 1) mobile devices equipped with
LTE and WiFi wireless capabilities, 2) LTE eNodeB (i.e.,
an LTE access point), 3) WiFi access point(s), 4) High-
performance Computing (HPC) device(s). The DistressNet-
NG hardware is shown in Figure 2. A lightweight manpack
comprises of a Baicells eNodeB and a Ubiquiti WiFi access
point that provide LTE and WiFi connectivity to mobile de-
vices. LTE EPC functionalities are managed by NextEPC [13],
an open-source LTE core running on an Intel NUC.

B. DistressNet-NG Software architecture

The Apache big data ecosystem has become synonymous
with big data processing in the cloud. However, it is not
designed to run on mobile devices and performs poorly if
servers are mobile. Hadoop, in the Apache ecosystem, splits a
submitted job into several small tasks and executes these tasks
in parallel, on multiple servers, reducing the delay associated
with a sequential execution. The Hadoop Distributed File
System (HDFS) replicates the data according to its demand
and reliability requirements. Apache also offers MapReduce
- a parallel processing framework, and Storm - a distributed
processing framework for big data processing in the cloud. To
provide coordination to all components of the Apache ecosys-
tem the coordination service ZooKeeper [14] is employed.

To enable these services in MEC, we have developed similar
components for mobile devices. Figure 3 provides an overview
of the DistressNet-NG software ecosystem. We have developed
a big data processing system Mobile MapReduce (MMR) and
a real-time stream processing system Mobile Storm (MStorm)
which run on mobile devices and provide the same functional-
ity as MapReduce and Storm [5]. To tackle device mobility and
frequent disconnections, we have developed Resilient Sockets
(RSock) [15], which abstracts data delivery for applications
in wireless networks with diverse connectivity. We have also
developed R-Drive [12] which stores large amounts of data on
mobile devices in a resilient manner.

C. Motivation for Edge Coordination

All DistressNet-NG applications need reliable and resilient
coordination. Unfortunately, conventional coordination ser-
vices such as ZooKeeper fail to operate in mobile edge
environments because of frequent node and link failures. If
the ZooKeeper ensemble (in which server IPs are statically
assigned) loses the majority of its server nodes, the entire
ensemble fails to work. When some nodes leave the edge
network, new nodes should be dynamically chosen to par-
ticipate in consensus and reconfigure the edge network. This



allows MEC applications to continue their operations. During
our development of MEC applications, we have identified the
need for the following services:

1) Device Naming
Most applications, such as MMR, rely on the Domain

Naming Service (DNS) to abstract the physical IP address for
communication with a target device. The conventional hierar-
chical DNS-based naming service fails to handle intermittent
network disconnections and high node mobility.

2) End User and Device Authentication and Authorization
A distributed computing framework requires devices or

end-users to be authenticated and authorized before receiving
services. Cloud-based services (e.g., Kerberos) fail to work
when disconnected from the authorization entity. MEC needs a
framework where devices can be authenticated and authorized
by an edge network autonomously in both connected and
disconnected scenarios.

3) Node and Service Discovery and Coordination
In addition to the naming service, distributed applications

also require a coordination service, which provides service
provider discovery, data synchronization, group configuration,
leader election, status monitoring, critical section synchroniza-
tion, queuing, etc. The service discovery should provide a
global view of the available servers for a service, and when
possible, provide a subset of nearby servers.

4) Resilient Metadata Storage
Some applications such as a Distributed File System (DFS)

must store file metadata on resilient storage. In Apache HDFS,
the file metadata (information about where file fragments are
stored) is stored on a single Master device - the Name Node. In
the edge network, this metadata must be stored over multiple
devices, guarding against device failure and disconnections.

5) Edge Status Monitoring
MEC client applications require knowledge about the edge

network status (e.g., wireless link qualities between peer
devices, device battery status, and device processing load)
in order to make intelligent decisions for computation or
data offloading. Typically these applications assess the edge
network individually, resulting in congestion. To reduce this
overhead, there is a need for a single service in an edge
network to provide a comprehensive view of the edge to client
applications. Network middleboxes such as firewalls [16] used
in most standard deployable networks disrupt the conventional
ad hoc link maintenance and routing protocols. Thus, there is
a need for an edge status monitoring service that can work
with these networks.

III. EDGEKEEPER DESIGN AND API

In this section we present the design of EdgeKeeper, a
resilient and lightweight coordination service for MEC, and
how it addresses the needs of MEC applications that were
identified in the previous section. EdgeKeeper runs as a
background process on all edge devices. Instead of running one
EdgeKeeper on a central device and storing all data at a single
node, data is replicated over multiple devices to tackle node

and link failures. The devices that store the data with consis-
tency are called EdgeKeeper replicas and provide EdgeKeeper
functionality to the slaves (non-replica EdgeKeeper devices,
or clients). The terms non-replica EdgeKeeper devices, slaves
and clients will be used inter-changeably. The roles of replica
and slave are chosen dynamically, depending on the network
status.

A. Device Naming

EdgeKeeper provides resilient device naming for edge net-
works. When connected to the Internet, it provides a coherent
name resolution service at a global scale. EdgeKeeper employs
the Global Naming Service (GNS) [17], which utilizes multi-
ple name servers to handle high name resolution rates across
the globe. Each name record is associated with a primary
key that is a globally unique identifier (GUID). However,
if a GNS server gets disconnected from the federated group
of GNS servers, it fails to provide services. To address this,
EdgeKeeper also employs a local cache mechanism to store
the name records at the edge. The name record updates
are committed to the local cache and lazily updated to the
GNS server whenever connection to the Internet is restored.
The cache is maintained by the EdgeKeeper-replicas that run
consensus amongst themselves for consistency.

EdgeKeeper also provides the conventional DNS name-to-
IP translation. As EdgeKeeper-master runs the DHCP for the
LTE and WiFi network, in the typical cases, the DNS translator
also resides there. Upon receiving a DNS query, the translator
tries to resolve the name using two methods: 1) checking with
the local GUID record in the cluster for IP translation and 2)
forwarding the query to one of the GNS servers. The DNS
server will return the result from the first completed query.

B. Authentication and Authorization

EdgeKeeper uses X509 certificates for authentication [18],
thus each device maintains a public-private key pair. A GUID
is a self-certifying identifier as it is derived by a one-
way hash function (known universally) from a user’s public-
key. A bilateral nonce-based challenge-response is used to
authenticate if a node claims to be the GUID owner. In our
proposed architecture, a certifying authority (CA) at each
organization creates client certificates and signs them using the
CA’s private key. The CA’s public certificate (.pem) is stored
at the TrustStore of the federated GNS servers. When a new
node tries to create a GNS account, it provides the signed
client certificate. Since the GNS server already contains the
public certificate of the CA, it can verify the client. Multiple
CAs can be imported to the trust store of GNS servers and
thus, multiple entities can have their own CA and provide them
to GNS.

The client credentials (public-private key pair and a signed
certificate from a CA) are stored in a .p12 file which contains:
1) a public certificate containing user credentials (identi-
ty/name, organization, etc.), the public key and the digital
signature from a CA; 2) the public key and the certificate
of the CA; and 3) the private key corresponding to the public



key of the user. The .p12 file is password protected making
the private key secure from any unauthorized access.

C. Node and Service Discovery and Coordination

EdgeKeeper uses GUID records for service discovery. If
a device offers a service and wants it to be discovered by
other nodes in the network, the service name and the role
(e.g, mstorm:master) are part of the GUID record. Each GUID
record contains an associative array of key-value pairs. Any
node that wishes to find a list of nodes offering a particular
service will query EdgeKeeper to retrieve a list of GUIDs,
which contains the key-value pair as service: role.

D. Resilient MetaData Storage

EdgeKeeper also provides resilient metadata storage to
client applications. To eliminate the problem of a single point
of failure, it uses a ZooKeeper-like consensus. In our design,
all replica nodes participate in the consensus. When the cluster
cannot reach consensus due to a majority of server failures,
new nodes are chosen dynamically to be replicas. Maintaining
consensus over wireless links is costly as it involves a large
number of message exchanges between replicas. An intelligent
decision should be made to choose the number of replicas.

E. Edge Status Monitoring

At the edge, applications need information about the net-
work topology and devices’ statuses. EdgeKeeper provides
applications this information, through the following services:

1) Network Topology Discovery
EdgeKeeper runs a topology discovery service where each

device periodically pings other devices in the network, thus
determining the device-to-device link quality. EdgeKeeper
maintains a network graph which contains available nodes
and the links among the nodes. Each node maintains the
link qualities to its immediate neighbors when there are
multiple wireless links possible between two devices (e.g.,
WiFi and LTE), EdgeKeeper maintains information about all
links. Periodically each node calculates the optimal distance
from itself to all destinations and broadcasts this distance
vector to its neighbors. Thereby, the whole network is seen
as a two-hop network from all nodes. Each device periodi-
cally sends a UDP packet containing its distance vector to
individual neighbors using unicast IP addresses. Measuring
the bandwidth over the wireless link is difficult because it
requires periodically probing a link (thus impacting all other
traffic). For link quality, EdgeKeeper measures the round-trip-
time (RTT) and the expected number of transmissions required
for a packet to be successfully transmitted and acknowledged
(ETx). For each link, EdgeKeeper stores an average value of
the measured RTTs using an exponential moving average. The
ETx of a link between nodes A and B is calculated as follows:
ETxAB = 1

(1−PDRA→B)(1−PDRB→A) , where PDRA→B is
the packet loss the rate from A to B and PDRB→A is the
packet loss the rate from B to A.

A node inside a deployable edge network can also reach a
node residing in the cloud as the cloud nodes have public IPs.

However, cloud nodes can not initiate connections to nodes
sitting behind middleboxes (NATs, firewalls, etc.). However,
if a TCP connection is initiated from an edge network to
the cloud server, the cloud server can reply to the edge
network through the established session. The EdgeKeeper-
master assesses the link quality of the link between itself and
the cloud server using periodic pings through TCP sessions.
All other nodes in the edge network add this link to their
topology graph.

2) Device and Application Health monitoring
As edge applications require the status of peer devices (e.g.,

number of functioning processors, available memory, remain-
ing battery, available storage, etc.), EdgeKeeper makes health
monitoring data available to all nodes in the edge network.
The EdgeKeeper running on each device periodically measures
the device status and reports it to the local EdgeKeeper-
master. Any edge application can obtain a device’s status
through its resident EdgeKeeper, which queries it from the
EdgeKeeper-master. Applications can also report application-
specific statuses, such as queue length and processing latency.

IV. EDGEKEEPER IMPLEMENTATION

In this section we present the implementation of Edge-
Keeper in detail, starting from how an edge network is formed,
how EdgeKeeper handles node departures/failures, to edge
partitioning and merging. As EdgeKeeper runs on all edge
devices, it is implemented as a daemon process in Linux
and as a background service in Android. Client applications
such as MStorm, RSock, MMR, and R-Drive interact with the
EdgeKeeper service running on the local device. The client
applications use a Java client library that implements the Edge-
Keeper API (i.e., the communication with the EdgeKeeper
process through JSON-based RPC over a local TCP socket).

A. Node Discovery with EdgeKeeper

To form an EdgeKeeper cluster, multiple nodes need to
discover each other. The node and service discovery was
presented in Section III-C. Discovering neighbors in a LAN
is a well-studied topic (e.g. ZeroConf LLMNR [19], Multi-
cast DNS (mDNS) [20], DNS-SD [21], etc.). Existing ser-
vice discovery protocols like Avahi [22], Bonjour [23], and
NSD (Android) employ DNS-SD (DNS Service Discovery) or
mDNS (multicast DNS) for service discovery and registration.
The implementation of DNS-SD and mDNS require support
for multicast/broadcast, capability that is not available over
LTE wireless links. To tackle this issue, we have developed a
lightweight solution through which a new node can find other
nodes in the network.

We designate a node as a gateway and call it EdgeKeeper-
master to which all new nodes send a first message indicating
that they widh to join it. After joining a wireless network using
WiFi or LTE, a new node obtains its IP address from a DHCP
server. The DHCP reply contains the master’s IP in the DNS
field (the EdgeKeeper-master runs the DNS server). Using a
special hostname (master.distressnet.org) the new
node then finds the IP address of the master as a first step. The



second step in this process is to start the Network Topology
Discovery. The new node sends a topology ping message to the
master. The ping message contains the new node’s GUID, IPs,
and a sequence number. Upon receiving the ping message, the
master replies to the ping with its GUID and IPs. The master
also adds this device to its network topology graph.

For the new node’s EdgeKeeper to access the GUID records
maintained by the EdgeKeeper replicas, it: a) sends a request
to the EdgeKeeper-master for the edge status; and b) it receives
the current status of the replicas with their IP addresses. If
the status confirms that the minimum number of replicas are
present, the new node connects to the replicas. If the status
indicates that the quorum (minimum number of replicas) is
not met, the new node waits and fetches the status repeatedly.
Also, if the master decides to use the node as one of the
replicas, it sends a request to join as one of the replicas.

B. EdgeKeeper Replica Selection - Edge (Re)Formation

The EdgeKeeper-master uses a parameter r read from a
configuration file for the number of replicas. For an edge to
be formed there must be at least r/2 + 1 nodes. If r is 1,
the master chooses itself as the only replica. For multiple
replicas, the master periodically checks the network topology
for the presence of other nodes, as presented in the previous
section. From the topology, it selects its one-hop neighbors
to be replicas. Since the replicas run consensus, they must
be reachable by each other without any middle boxes. For a
replication factor of r, the master always tries to select r nodes
for replicas. If there are less than r nodes available, then it
tries to assign the maximum possible suitable nodes to serve
as replicas. If less than r/2 nodes are selected as replicas, the
edge status is updated to the Looking state. If more than r/2
nodes are serving as replicas, the state is updated to Formed.

C. EdgeKeeper Resiliency to Replica Failure

EdgeKeeper is resilient to nodes leaving the edge network
(either by network or device failure). If the departing node is
serving as one of the replicas, a new node needs to be selected
to serve as a replica. The EdgeKeeper-master periodically
checks the network topology graph for any disconnected
replicas, and assigns a new node to serve in its place. The
master also informs all the replicas about the change. Note
that, if the majority of replicas leave an edge network together,
then the quorum cannot be achieved and an edge cannot be
formed.

D. EdgeKeeper in Ad-Hoc Networks - WiFi-Direct

EdgeKeeper is designed to work in both infrastructure-mode
(LTE and WiFi) and Ad-Hoc mode. If a group of nodes
gets disconnected from the HPC node (WiFi/LTE), then those
nodes can form an Ad-Hoc edge network. A user initiates
the WiFi-Direct on one of the nodes as the group owner.
EdgeKeeper on this device will operate as the EdgeKeeper-
master. Once this is configured, other nodes can join the edge
network as described in Section IV-A.

(a) (b) (c)
Fig. 4: Real-world deployments: a) Gypsum, CO, with a rapidly
deployable as shown; b-c) Disaster City, TX, with the manpack shown
E. Edge Partitioning and Merging

When two edge networks are within communication range
of each other (either wireless or wired), information can
be exchanged between them. Although they remain separate
entities/edges, they “merge” from applications’ perspectives.
The EdgeKeeper-masters in the two edges share their GUID
data and metadata information with each other. Upon receiving
this information from a neighboring EdgeKeeper-master, the
local EdgeKeeper-master pushes this data to its local replicas.
Thus, applications running on the two edges discover each
other through service discovery.

F. EdgeKeeper Integration with the Cloud

Client applications such as MStorm can utilize high-
performance servers available in the cloud. EdgeKeeper runs
on the cloud servers as a separate cluster. An EdgeKeeper-
master present in one edge network monitors connectivity
to the cloud. If the connectivity to the cloud is present,
the EdgeKeeper-master initiates a TCP connection to the
EdgeKeeper in the cloud and it monitors the connection quality
through periodic ICMP messages. Client applications rely on
this cloud-connectivity quality to determine whether or not to
offload computation to the cloud.

V. PERFORMANCE EVALUATION

To investigate the resiliency and overhead of EdgeKeeper
and its suitability for MEC, we employed the following
performance evaluation metrics: edge formation latency, edge
reformation latency (when a replica node joins or leave
an edge), EdgeKeeper overhead (CPU and memory), and
API performance for two applications, namely R-Drive and
MStorm. The parameters that we varied were the type of
wireless edge connectivity (WiFi, WiFi-Direct, LTE-Lab, and
LTE-Outdoor), the number of EdgeKeeper replicas (used for
resiliency), read/write latency to EdgeKeeper metadata, and
API request latency from applications.

Due to the large number of parameters and performance
metrics, we evaluated EdgeKeeper in both a laboratory en-
vironment and through three real-world deployments using
various types of MEC hardware. Images from our deployment
areas and hardware are presented in Figure 4. Our first deploy-
ment was carried out in 2018 in an open mountainous region
near Gypsum, CO (Figure 4a), where the carried devices
formed an edge cluster through LTE network. These exper-
iments helped us understand the impact of physical distance
on EdgeKeeper API latency. The second deployment, depicted
in Figure 4b was done in 2020, as part of a disaster response



(a) (b)
Fig. 5: Edge formation latency, when: a) at least half of required
replicas are present; and b) a new node joins a partially formed edge
and it is selected as a replica. The 5-replica edge formation and
reformation experiments were not conducted for the LTE-Outdoor
experiments, due to time constraints - duration of the flight and set
of other experiments needed)

exercise (i.e., wide area search and rescue) in Disaster City,
TX. The disaster response team consisted of four responders,
with one of them carrying a manpack shown in Figure 4c,
while the others were equipped with helmet-mounted cameras.
All responders carried Android phones that were connected to
the manpack using both LTE and WiFi. The MEC application
deployed was a Face Recognition app employing MStorm. The
third deployment [24] was carried out in 2021 in the Christman
Airfield in Fort Collins, CO, where the wireless connectivity
in the MEC was provided by a drone with a payload of an
LTE-in-a-box by Featherlite [25]. From this experiment, we
were able to assess the feasibility of EdgeKeeper for highly
dynamic environments employing only LTE.

The performance evaluation of EdgeKeeper in the aforemen-
tioned environments/deployments is presented in the sections
that follow.

A. Edge Formation Latency

In this set of experiments we evaluated our design decisions
and implementations mentioned in Sections IV-A and IV-B.
We measured the edge formation latency as a function of
wireless connectivity (WiFi, WiFi-Direct, LTE-Lab, and LTE-
Outdoor) and the degree of resiliency, i.e., the number of
EdgeKeeper replicas (r as mentioned before). Figure 5a plots
the results of these experiments. As shown, in all scenarios for
a 1-replica configuration, EdgeKeeper forms an edge within
2-3s. While this edge formation latency is rather short, it
offers the least degree of fault tolerance. When EdgeKeeper
is configured to use multiple replicas, the edge formation
latency becomes significant. In these cases, the EdgeKeeper-
master needs to discover other nodes in the network and to
select suitable replicas. As the service discovery employs ping
messages sent at 10s intervals, the edge formation latency
observed was between 15-25s. In the WiFi and LTE network
scenarios, nodes discover the EdgeKeeper-master through
DNS resolution which exhibits a higher delay than WiFi-
Direct networks. In a WiFi Direct network, nodes treat the
group owner as the EdgeKeeper-master and directly join the
edge, without going through DNS. In most cases, we can see
that an edge cluster forms within 25s, even when EdgeKeeper
is deployed in a highly dynamic environment, such as LTE-
Outdoor (i.e., third deployment, when the MEC was formed
through LTE on a drone).

(a) (b)
Fig. 6: EdgeKeeper overhead on an Essential PH1 mobile device,
as a function of the number of nodes in the edge and the type
of EdgeKeeper role: a) memory consumption; b) average CPU
utilization

(a) (b)
Fig. 7: EdgeKeeper metadata write and read latency (in a lab
environment), as a function of the data size and number of replicas,
when: a) a replica node performs a write; b) a non-replica node
performs a write; c) a replica node performs a read

We have also evaluated edge reformation latency, i.e., how
long it takes to add one new node as a replica to an already
established EdgeKeeper cluster where there is a shortage of
replica nodes (i.e., there are between r/1 + 1 and r replicas
only). For the case r = 3, EdgeKeeper forms a MEC and
serves clients as long as there are 2-replicas. When another
node joins, the master includes it in the replica pool aiming
for the configured r=3 replicas. Figure 5b shows the edge
reformation result after a node joins an existing edge and
EdgeKeeper reforms the edge. In most cases, a successful edge
reformation took no more than 25s on average.

B. EdgeKeeper Overhead

To assess how lightweight EdgeKeeper is (i.e., its overhead),
we employed an Android Studio profiler which measures the
resource consumption of running EdgeKeeper on mobile de-
vices. Figure 6 depicts the memory consumption and processor
utilization of EdgeKeeper. The results show that when running
in master mode, EdgeKeeper consumes significantly more
memory than when running in replica mode. However, the
processor usage is similar for master and slave modes. In slave
mode, the memory consumption by the EdgeKeeper remains
intact even when the number of nodes in the cluster increases.
In all cases, the memory consumption is below 40MB, which
is negligible compared to 4GB internal memory of the mobile
phone used. Processor usage is within 0.16%. These results
show that EdgeKeeper is lightweight and suitable for MEC
mobile devices.

C. EdgeKeeper API - R-Drive Performance

In this set of experiments we investigated the suitability of
EdgeKeeper for a MEC application, R-Drive. R-Drive requires
resilient metadata storage, which EdgeKeeper provides as



Fig. 8: EdgeKeeper service discovery API latency for 1-replica
EdgeKeeper cluster in an outdoor deployment

presented in Section III-D. In a lab environment (using WiFi),
we measured EdgeKeeper metadata write and read latencies,
when requests are made directly to an EdgeKeeper replica
node or a non-replica node, as a function of metadata size and
the degree of fault-tolerance (i.e., parameter r). The results are
shown in Figure 7. We observe that the metadata write latency
is significantly higher when the request is made by a non-
replica node, as the request needs to be sent over the network
to replicas and thus, it involves network traffic. The results
also show that the read latency is lower than the write latency
as writing data requires a consensus to be achieved among
replica nodes. The results also show that the latency increases
with an increase in the number of replicas. This is expected, as
the consensus protocol for a large number of replicas requires
a higher number of message exchanges.

D. EdgeKeeper API - MStorm Performance

In this set of experiments we investigated the impact of
wireless link quality on EdgeKeeper’s API performance for
a MEC application that employs EdgeKeeper for Service
Discovery, MStorm. As mentioned, MStorm is a real-time
stream processing framework for distributed edge computing.
MStorm employs EdgeKeeper for discovering devices when
establishing an MStorm edge computing cluster. Results ob-
tained from the first deployment (i.e., Figure 4a) are shown in
Figure 8. Remarkably, the EdgeKeeper API invocation delays
for Service Discovery are within 8ms. This is due to the fact
the request is served from a local EdgeKeeper cache (i.e., the
node and service discovery are completed well before MStorm
requests this information from EdgeKeeper). The observed
slight variance in the request latency can be explained by the
varying processing load of the device at that time.

VI. CONCLUSIONS

In this paper, we present EdgeKeeper, a resilient and
lightweight coordination service for mobile edge clouds. We
designed EdgeKeeper to provide services including device
naming, application discovery, service coordination, metadata
storage, and edge status monitoring to MEC client applications
that may be disconnected from the Internet. We have imple-
mented EdgeKeeper on both Android and Linux platforms and
evaluated its performance in both lab and real-world deploy-
ments. The performance results show that EdgeKeeper fulfills
all requirements for edge coordination in MEC. EdgeKeeper
is lightweight and resilient to node and link failures and it is
able to reconfigure the MEC seamlessly with short latencies.

Future work for EdgeKeeper includes new capabilities such as
edge resource orchestration.

REFERENCES

[1] H. Chenji, A Fog Computing Infrastructure for Disaster Response. PhD
thesis, Texas A&M University, 2014.

[2] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkatasub-
ramanian, “Mobile Cloud Computing: A survey, state of art and future
directions,” Mobile Networks and Applications, vol. 19, no. 2, 2014.

[3] K. Usbeck et al., “Improving situation awareness with the Android
Team Awareness Kit (ATAK),” in Proceedings of Sensors, and Com-
mand, Control, Communications, and Intelligence (C3I) Technologies for
Homeland Security, Defense, and Law Enforcement XIV, International
Society for Optics and Photonics, 2015.

[4] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 5, pp. 2795–2808, 2016.

[5] M. Chao and R. Stoleru, “R-MStorm: A resilient mobile stream process-
ing system for dynamic edge networks,” in Proceedings of 2020 IEEE
International Conference on Fog Computing (ICFC), 2020.

[6] J. George, C. Chen, R. Stoleru, G. G. Xie, T. Sookoor, and D. Bruno,
“Hadoop MapReduce for tactical clouds,” in 3rd IEEE International
Conference on Cloud Networking (CloudNet), 2014.

[7] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[8] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: architecture and service modes,” IEEE
Communications Magazine, vol. 53, no. 6, pp. 18–24, 2015.

[9] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 80–88, 2015.

[10] Apache, “Hadoop.” [last accessed July 20, 2022].
[11] H. Chenji, W. Zhang, R. Stoleru, and C. Arnett, “DistressNet: A disaster

response system providing constant availability cloud-like services,” Ad
Hoc Networks, vol. 11, no. 8, pp. 2440–2460, 2013.

[12] M. Sagor, R. Stoleru, A. Haroon, S. Bhunia, M. Chao, A. Altaweel,
M. Maurice, and R. Blalock, “R-Drive: Resilient data storage and sharing
for mobile edge clouds,” in 19th IEEE International Conference on
Mobile AdHoc and Smart Systems (MASS), 2022.

[13] NextEPC Inc., “NextEPC.” [last accessed July 20, 2022].
[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free

coordination for internet-scale systems.,” in USENIX annual technical
conference, vol. 8, 2010.

[15] A. Altaweel, C. Yang, R. Stoleru, S. Bhunia, M. Sagor, M. Maurice,
and R. Blalock, “Rsock: A resilient routing protocol for mobile fog/edge
networks,” Ad Hoc Networks, vol. 134, p. 102926, 2022.

[16] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match! near-optimal
and incremental middlebox deployment,” ACM SIGCOMM Computer
Communication Review, vol. 46, no. 1, pp. 30–36, 2016.

[17] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and
A. Yadav, “A global name service for a highly mobile internetwork,” in
ACM SIGCOMM Computer Communication Review, vol. 44, pp. 247–
258, ACM, 2014.

[18] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet x. 509 public
key infrastructure certificate and certificate revocation list (crl) profile,”
2002.

[19] B. Aboba, D. Thaler, and L. Esibov, “Link-local multicast name
resolution (LLMNR),” tech. rep., RFC 4795 (Informational), Internet
Engineering Task Force, 2007.

[20] K. Sundaresan, C. Donley, C. Grundemann, and V. Sarawat, “mDNS-
DNS architecture,” Oct. 25 2016. US Patent 9,479,422.

[21] S. Cheshire and M. Krochmal, “DNS-based service discovery,” tech.
rep., RFC 6763, February, 2013.

[22] L. Poettering and T. Lloyd, “Avahi.” [accessed Jul 20, 2022].
[23] Apple Inc., “Bonjour.” [accessed Jul 20, 2022].
[24] A. Haroon, M. Sagor, L. Jin, R. Stoleru, and R. Blalock, “On edge

coordination in highly dynamic cyber-physical systems for emergency
response,” in 2022 Workshop on Cyber Physical Systems for Emergency
Response (CPS-ER), 2022.

[25] VirtualNetCom, “FeatherLite™ - Perfect Solution for Drone Deploy-
ment.” [last accessed July 20, 2022].

http://hadoop.apache.org/
https://nextepc.org
https://avahi.org
https://developer.apple.com/bonjour/
https://www.virtualnetcom.com/
https://www.virtualnetcom.com/

	Introduction
	Background and Motivation
	DistressNet-NG Hardware Architecture
	DistressNet-NG Software architecture
	Motivation for Edge Coordination
	Device Naming
	End User and Device Authentication and Authorization
	Node and Service Discovery and Coordination
	Resilient Metadata Storage
	Edge Status Monitoring


	EdgeKeeper Design and API
	Device Naming
	Authentication and Authorization
	Node and Service Discovery and Coordination
	Resilient MetaData Storage
	Edge Status Monitoring
	Network Topology Discovery
	Device and Application Health monitoring


	EdgeKeeper Implementation
	Node Discovery with EdgeKeeper
	EdgeKeeper Replica Selection - Edge (Re)Formation
	EdgeKeeper Resiliency to Replica Failure
	EdgeKeeper in Ad-Hoc Networks - WiFi-Direct
	Edge Partitioning and Merging
	EdgeKeeper Integration with the Cloud

	Performance Evaluation
	Edge Formation Latency
	EdgeKeeper Overhead
	EdgeKeeper API - R-Drive Performance
	EdgeKeeper API - MStorm Performance

	Conclusions
	References

