
R-Drive: Resilient Data Storage and Sharing
for Mobile Edge Clouds

M. Sagor, R. Stoleru, A. Haroon, S. Bhunia, M. Chao, A. Altaweel, M. Maurice†, R. Blalock†

Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
†National Institute of Standards and Technology (NIST), Boulder, Colorado, USA

{msagor, stoleru, amran.haroon, sbhunia, chaomengyuan, altaweelala1983}@tamu.edu
†{maxwell.maurice, roger.blalock}@nist.gov

Abstract—Mobile Edge Cloud (MEC) systems are currently
being developed and gaining popularity for disaster response
applications and for tactical environments as they enable in-
tensive computation and data storage tasks at the edge. MEC
applications for these scenarios generate and process significant
mission-critical and personal data that require resilient and
secure storage and sharing. In this paper, we present the design,
implementation, and evaluation of R-Drive, an adaptive erasure-
coded and encrypted resilient data storage and sharing frame-
work for disaster response and tactical MEC applications. R-
Drive adaptively chooses erasure coding parameters to ensure the
highest data availability with a minimal storage cost. R-Drive’s
distributed directory service provides a resilient and secure
namespace for files with rigorous access control management. R-
Drive leverages opportunistic networking, allowing data storage
and sharing in mobile and loosely connected MEC environments.
We implemented R-Drive on Android and integrated it with
existing MEC applications. Performance evaluation results show
that R-Drive enables resilient data storage and sharing.

I. INTRODUCTION

In Edge Clouds (EC), devices form a local cluster and
use available computing and storage resources, thus allowing
applications to store and process data locally [1], [2]. EC
platforms that are designed for mobility (i.e., Mobile Edge
Cloud, or MEC) need to handle disconnected environments
where infrastructure networks such as cellular or WiFi are
unavailable and cloud services are disconnected [3], [4]. MEC
platforms for disaster response (e.g., wide area search and
rescue, wildfire fighting) are gaining significant popularity [5]
among first responders and tactical teams. In these scenarios,
a first responder may be equipped, as shown in Figure 1, with
mobile devices, wearable sensors, and a manpack (i.e., a back-
pack containing data storage, processing and communication
capabilities) when performing mission-critical operations.

On-body cameras and other sensors, gesture recognition
devices, as well as MEC applications on mobile devices
generate large amounts of mission-critical data that needs to
be stored in a resilient manner and shared seamlessly among
responders [7]. Existing commercial data storage services, e.g.,
Dropbox [8], Google Drive [9], OneDrive [10], etc. are not
designed for MEC and cannot operate in the absence of con-
nectivity to the Internet/cloud. Although these services allow
users to store and modify data offline, the data is simply stored
locally making it prone to data unavailability/loss due to device
failure by energy depletion or disconnection. Also, existing

AR Helmet

Mobile Phone

Smart Watch

Embedded Sensors

video data

health data

App data

sensor data

Fig. 1: Next generation first responders equipped with wearable
technologies (AR helmet, on-body camera, embedded sensors) and
mobile devices [6]

storage applications can only share data through the cloud
via infrastructure networks. Users may employ data-sharing
applications that make use of Ad-Hoc network connectivity
(e.g., Bluetooth, Wi-Fi Direct), but disconnections may occur
during data sharing sessions. Thus, users may be required to
minimize movement and stay connected until the data-sharing
session completes, which is impractical for search and rescue
scenarios.

To address the mentioned limitations, we present R-Drive,
a resilient data storage and sharing solution for MEC envi-
ronments. R-Drive handles both device and network failures
in MEC environments and provides secure storage of the data
in a disconnected environment. The contributions of this work
are as follows:

• We present the design of R-Drive, a resilient data storage
and sharing system for MEC, its implementation in a real
system, and its evaluation, demonstrating its suitability
for MEC.

• R-Drive employs a novel Adaptive Erasure Coding
scheme designed for MEC that enables resilient data
storage against device failure.

• R-Drive employs a novel opportunistic networking so-
lution for seamless data sharing while hiding network
failure from client applications.

• R-Drive transparently enables existing data storage
(Dropbox) and disaster response applications to share
data without assistance from the cloud.

The rest of the paper is structured as follows. In Section II
we review MEC architecture and systems and present state
of the art solutions for resilient data storage and sharing. In

Fig. 2: MEC architecture, where mobile devices form two edge
networks MEC-1 (with HPC infrastructure) or MEC-2 (ad-hoc), and
share resources among themselves, or with the cloud

Fig. 3: DistressNet-NG hardware components: a) LTE antenna, b)
Wi-Fi AP, c) LTE eNB, d) Intel NUC with LTE EPC and HPC; e)
Battery; f-g) Helmet with body camera; h) Mobile devices

Section III we present the design and implementation of R-
Drive as resilient and secure data storage and sharing in MEC.
In Section IV we evaluate the performance of our proposed
solution and conclude in Section V with ideas for future work.

II. BACKGROUND AND STATE OF THE ART

A. Mobile Edge Clouds for Disaster Response and Tactical
Environments

In MEC, several spatially close mobile edge devices form
an edge cluster under effective coordination [11]. Figure 2
depicts such a MEC architecture for disaster response or
tactical environments. Within a cluster, each mobile device
is a service node that can appropriately share its underutilized
resources (e.g., mobile CPU/GPU, communication, memory)
while providing its application services. Those devices are
typically connected to an HPC node that manages communi-
cations (e.g., LTE, WiFi, WiFi-Direct), allocates IPs, provides
DNS services, device naming, mapping device names to their
corresponding IPs, etc. Data can be offloaded to HPC and
the connected mobile devices for processing and storage. As
shown in Figure 2, two MECs (where nodes “HPC-1” and “M-
6” serve as central nodes for edges 1 and 2, respectively) can
provide cloud-like services intra-edge as well as inter-edge.

DistressNet-NG [12], [11], [13], [14], [15] is a next-
generation MEC system for disaster response, which consists
(as shown in Figure 3) of a manpack equipped with wireless
communication (LTE and Wi-Fi) and HPC (Intel NUC). The
software architecture for DistressNet-NG is shown in Figure 4.
Two important components of the DistressNet-NG architec-
ture are EdgeKeeper and RSock (Resilient Socket). Edge-
Keeper [11] is a distributed coordination, service discovery,

Fig. 4: DistressNet-NG software ecosystem

and meta-data storage application that runs on all devices in
MEC. Based on a primary/master-replica/slave architecture,
EdgeKeeper is responsible for maintaining consensus among
replica storage devices. EdgeKeeper provides services such
as device authentication, service discovery, edge health mon-
itoring, network topology management, and metadata store.
RSock [15] is a resilient transport protocol designed for
sparsely connected network environments aiming to make
efficient use of available network bandwidth and ensure timely
data delivery. RSock performs multipath packet routing over
available network interfaces such as LTE, WiFi-Direct, WiFi.

DistressNet-NG also provides R-MStorm[13], a real-time
stream processing framework at the edge similar to what
Apache Storm [16] provides in the cloud. Applications that
were developed usign R-MStorm are Face Detection, Face
Recognition, and a Voice Assistant.

B. Motivation and State of the Art

Applications in MEC platforms for disaster response gener-
ate gigabytes of mission-critical and personal data that require
resilient and secure storage. Often, for further processing,
critical data gets distributed among devices in the cluster that
is prone to frequent disconnections and failures. This raw and
processed data needs to be readily available to the cluster
devices for a seamless rescue/tactical operation. Commercial
storage solutions (e.g, Dropbox, Google Drive, OneDrive)
store the data only on a device’s local storage when the device
is disconnected from the cloud, thus they are vulnerable to
data unavailability due to device failure. Additionally, some
applications (e.g., Survey123 shown in Figure 4 and employed
by disaster responders) files are not encrypted (even in Android
12), allowing data tampering by injecting corrupt data by
malicious applications.

Other solutions that target resilient data storage primarily
in the cloud do not apply to MEC. OFS [17], HDFS [18] and
GFS [19] are too heavy-weight either for storage overhead,
memory footprint or computation overhead. MEFS [20] does
not work in absence of cloud. PFS [21], FogFS [22] rely on
specific mobility models that may be impractical for MEC
that are disconnected from the cloud for long periods of time.
Hyrax [23] ports HDFS to Android but shows poor perfor-
mance for CPU bound tasks. While MDFS [24] is designed
for long periods of disconnection in MEC, its implementation
is based on a purely connected network, thus, not easily
applicable to real world MEC.

Data sharing is equally important for MEC. Applications
like Google Files [25] and SHAREit [26], let users share files

Fig. 5: R-Drive components and their integration with the
DistressNet-NG software ecosystem, including EdgeKeeper, RSock
and MEC applications for disaster response: MStorm [32], Sur-
vey123 [33] among others.

over Ad-Hoc networks (Wi-Fi Direct, Bluetooth, NFC). Ad-
Hoc networks, however, rely on short range communication
and constant connectivity, making them impractical for first
response or tactical environments, characterized by highly
dynamic mobility. Applications designed for MEC and de-
ployed in disaster response scenarios need the support for
opportunistic data sharing, access control, synchronization in
absence of cloud connectivity, and a common namespace to
manage metadata and permissions.

C. Erasure Coding for Resilient Data Storage

Reed–Solomon erasure coding [27] is a widely used coding
scheme to correct burst errors associated with media failures
in mass storage systems. When employing erasure coding for
data storage, two parameters (n and k) need to be specified.
A high n and low k increase data availability at the cost of
higher storage, and vice-versa. We remark that (n, k) should
be decided dynamically depending on resource availability in
MEC and on user’s preference for quality of service (QoS).
HDFS and GFS use erasure coding for distributed storage, but
the choice of parameters for erasure coding (n, k) is fixed.
MDFS does not provide an online algorithm to select n and
k values for variable storage availability and file sizes. Zhu
et al. [28] presented an online adaptive code rate selection
algorithm for cloud storage that considers real-time user de-
mands for optimum (n, k). However, this solution assumes that
all candidate storage devices have enough storage capabilities.
HACFS [29] implements an extension to HDFS to adaptively
choose between two (fast and compact code) coding schemes
but their solution involves using fixed coding parameters for
each of the coding schemes. Other researchers [30], [31] also
proposed solutions for erasure coding-based data storage, yet
they do not address how to choose n and k dynamically.

To the best of our knowledge, no solution exists that can
provide resilient data storage and sharing in MEC for highly
dynamic first responders and tactical environments, where
device failures/disconnections are frequent.

III. R-DRIVE SYSTEM DESIGN

The R-Drive system architecture (with its five major compo-
nents and their integration with the DistressNet-NG software
ecosystem) is shown in Figure 5. The Directory Service
provides a namespace for files and directories, the File Handler

TABLE I: R-Drive rnode structure

Field Size Description
rnodeType 1 Byte File or Directory rnode
rnodeID 16 Bytes Unique rnode ID
fileName Variable Original File Name
fileSize 8 Bytes Original File Size
fileID 16 Bytes Unique File ID
filePath Variable R-Drive File Path
N 2 Bytes N value for EC
K 2 Bytes K value for EC
blockCount 2 Bytes Number of Blocks
fragLocation Variable locations of fragments
fileList Variable List of Files
folderList Variable List of Subdirectories
permission Variable Access Control List
timeStamp 8 Bytes Time of Creation

performs file and directory operations (e.g., file creation,
retrieval and removal); the Adaptive Erasure Coding encodes
and decodes data into fragments using Reed-Solomon erasure
coding, the Cipher encrypts and decrypts data, and the Com-
mand Handler handles commands for basic storage operations.

A. R-Drive UI and API design

Storage in R-Drive takes place via R-Drive’s user interface
(UI) or Java client API. The R-Drive UI allows a user to
directly interact with the application. Client applications such
as R-MStorm use the R-Drive API to perform data storage.
For completeness, the R-Drive client API is as follows:
int mkdir(String rdriveDirectory,

List<String> permissionList);
List<String> ls(String rdriveDirectory);
int put(String localPath, String rdrivePath,

List<String> permissionList);
int get(String rdrivePath, String localPath);
int rm(String rdrivePath);

R-Drive also allows resilient data storage by monitoring
files in user-selected directories on local storage, similar to
Google Backup and Sync [34]. A user can select application
directories which are prone to data loss due to device failure.
R-Drive will periodically pull new changes and store them in
R-Drive. Currently, R-Drive supports backing up application
data for Survey123 [33].

In the following sections, we present in detail the design of
the core components of R-Drive.

B. Directory Service and Access Control

The Directory Service handles the creation and retrieval of
metadata, checking metadata permissions, and presenting a
namespace to clients. Metadata in R-Drive is organized as rn-
odes, with the structure of an rnode shown in Table I. An rnode
represents either a file or a directory. After creating an rnode,
the Directory Service stores it in EdgeKeeper. EdgeKeeper
replicates rnode to replica devices for fault tolerance, such
as master failure or cluster disconnection. Consequently, if
EdgeKeeper is configured with r replicas, R-Drive metadata is
stored resiliently and Directory Services are provided, as long
as there are ⌈r/2⌉ devices available. A directory creation takes
place when a client invokes the mkdir() API function or when
the command -mkdir is executed in the CLI. Directory retrieval

File Handler Cipher

 EdgeKeeperDirectory
Service

RSock

File
Blocks Encrypted Blocks

Fragments

………

Metadata
Update

1 2 k

put()

5

1 2

3

4

Adaptive
Erasure Coding

Fig. 6: R-Drive file storage steps: partitioning the file into blocks, en-
crypting them, applying the adaptive erasure coding and distributing
the fragments to best suitable n nodes

is initiated when a client invokes the get() API function or
when the command -ls is executed in the CLI.

R-Drive leverages a pluggable authentication scheme [35]
for managing access control. R-Drive also implements its
custom authentication as a part of the Directory Service.
Permissions can also be set via the -setfacl and -getfacl
commands entered through the CLI for an OWNER, WORLD,
or a list of GUIDs. Permissions for an rnode pertain to itself
and do not apply to children.

C. R-Drive Data Storage

Data is stored in R-Drive as files. File creation involves
copying a file from local file system to R-Drive using the
put() API or the -put command. Figure 6 shows the steps for
a file creation process in R-Drive. As shown, the file is first
divided into fixed sized blocks. Each block is then encrypted
with a unique secret key and later converted into n fragments
using erasure coding. All fragments are sent through RSock
by invoking the RSock client API. All fragments contain a
timestamp that acts as a version number for fragments. A
receiver device only accepts fragments with same or higher
timestamps. The Directory Service communicates with Edge-
Keeper to create an rnode for the new file.

In the sections that follow, we present in detail the cyphering
and adaptive erase coding techniques that R-Drive incorpo-
rates.

1) R-Drive Data Encryption: R-Drive uses 256 bit AES
encryption using a unique secret key for file encryption. The
key is further divided into B key-shards using Shamir’s Secret
Sharing Scheme (SSSS) [36]. SSSS is a distributed secret
sharing scheme in which a secret is divided into shards in
such a way that individual shards cannot reveal any part of the
secret, whereas an allowed number of shards put together can
reveal the secret. (T,N) is the conventional way to express the
SSSS system, where N is the total number of secret shards,
and T is the minimum number of shards required to unveil the
secret. In R-Drive we used (B,B) as parameters for SSSS,
where B is the number of blocks.

2) Adaptive Erasure Coding: R-Drive uses Reed-Solomon
erasure coding for data redundancy. In R-Drive storage, a file
of size F is divided into k fragments, each of size F/k.
Applying (n, k) encoding on k fragments will result in n
fragments, each of size F/k, where n ≥ k. Hence, the total

(a)

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Co
st

 (C
)

Code Rate (k/n)

=1.0
=0.8
=0.6
=0.4
=0.2
=0.0

wa{

(b)
Fig. 7: a) File size F’ after erasure coding (applied to a file F of
size 100MB) as a function of the code rate (k/n); and b) Cost as a
function of code rate for different wa

file size will be F ′ = n · F/k. The encoded n fragments are
then stored in geographically separated storage devices. To
reconstruct the file, any k fragments are sufficient. Thus, the
system tolerates up to n− k device failures. The choice of n
and k values are directly related to data redundancy (hence
availability) and storage overhead. Since devices in MEC are
prone to failure the question is how to choose the best n and
k values, and the fittest n nodes (in terms of available battery
life, storage capacity, etc.) so that the entire MEC system can
achieve the highest data availability for the least storage cost.

The ratio k/n in erasure coding, or the code rate, indicates
the proportion of data bits that are non-redundant. As a rule of
thumb, when the code rate decreases, the file size after erasure
coding increases, and vice-versa. But, a lower code rate usually
comes with higher n and lower k values, providing added data
redundancy. So, we cannot simply choose the lowest possible
code rates; in that case, we will exhaust the system storage
capacity very rapidly. Figure 7a shows the file size F ′ after
erasure coding as a function of code rate to illustrate the
fact that erasure-coded file size increases exponentially with
decreasing code rate.

We need an online algorithm that dynamically chooses the
(n, k) values and the fittest n nodes for file storage in the
MEC. To employ erasure coding in R-Drive, we need to
answer the following: 1) What code rate and what (k, n)
pair should the system choose?; 2) Given a code rate and a
(k, n) value pair, which specific n devices should the system
store the n file fragments to? and 3) How to obtain the system
parameters used in answering 1) and 2)?

Q1: What k and n values? If code rate k/n is small, there is a
high probability to recover a file because only a small number
of file fragments needs to be fetched (high availability). The
file size after erasure coding with code rate k/n is calculated as
F ′ = F ∗n/k, where F is the original file size. In this case, if
k/n is too small, n/k becomes very large, then the encrypted
file size F ′ becomes very large as well. To address this trade-
off, we present the cost of availability and storage C as a
weighted sum and formulate the problem as a minimization
problem:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a

ila
b

ili
ty

Device Availability

k=1,n=3
k=2,n=6

base

(a) k/n=1/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a

ila
b

ili
ty

Device Availability

k=1,n=2
k=3,n=6

base

(b) k/n=1/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a

ila
b

ili
ty

Device Availability

k=2,n=3
k=4,n=6

base

(c) k/n=2/3
Fig. 8: Example of different (k, n) pairs determining different system
availability. Each group of a, b, c contains two (k, n) pairs of same
ratio. The baseline in each group represents pure local storage

minimize
(k,n)

C(k, n, wa) = wa ∗ k/n+ (1− wa) ∗ n/k (1)

subject to: F/k ≤ Sn, (2)
T ≤ Tk, (3)
1/N ≤ k ≤ n ≤ N, k, n ∈ Z+ (4)
0 ≤ wa ≤ 1 (5)

where wa denotes the weight of availability cost, 1− wa the
weight of storage cost, Sn the nth maximum available storage
of all nodes, Tk denotes the kth longest remaining time among
the total available N devices, T denotes the minimum time that
a file is expected to be available in R-Drive. Constraint (2)
ensures that the storage allocation for a node does not exceed
available storage for each device. Constraint (3) ensures that
only devices with enough battery will be selected to sustain file
lifetime T . Constraint (4) ensures that only positive n and k
are selected, in the range [1/N,N]. The weight wa is adjusted
adaptively for different files, i.e., for a critical file, the system
sets a large wa so that a small k/n is chosen to improve its
availability and the opposite for non-important files.

We can solve the above minimization problem by iterating
over all possible (k, n) pairs and choose those with the
minimum costs as solutions. The time complexity of this
method is O(N2). However, there are sometimes several (k, n)
pairs with the same minimum costs. To further select among
these (k, n) pairs, we need a more precise method to depict
the system availability. For simplicity, we assume each device
has the same availability p. Then, the system availability can
be calculated as follows:

A(k, n, p) = Cn
k p

k(1− p)(n−k) + ...+ Cn
np

n (6)

Figures 8 (a), (b), and (c) each contains two (k, n) pairs
with the same ratio. As shown, when the code rate increases
from 1/3 to 1/2 then to 2/3, the system availability gradually
decreases. Meanwhile, in each group, when the device avail-
ability is small, the (k, n) pair with a smaller n has higher
availability than the other. However, as the device availability
gradually increases over a threshold, the setting with a bigger n
starts to achieve higher system availability than the setting with
a smaller n. In R-Drive, we calculate the device availability
pi of device i as Equation 7, where Ti is the remaining time
of device i.

pi =

{
1, Ti ≥ T

Ti/T , 0 < Ti < T
(7)

Algorithm 1: Choose (k, n) and n devices
Input : F , T , Si, Ti, wa

Output: (k,n) and n devices
1 (k, n)← (1, 1)
2 Cmin ← 1
3 for n′ ∈ 1...N do
4 for k′ ∈ 1...n′ do
5 if Satisfying Eq.(3.2)(3.3) then
6 if C(k′, n′) < Cmin then
7 (k, n)← (k′, n′)
8 Cmin ← C(k′, n′)

9 if k′/n′ = k/n then
10 if A(k, n, p) < A(k′, n′, p) then
11 (k, n)← (k′, n′)

12 V ← pick up devices with Si > F/k
13 sort V based on Ti in descending order
14 Vn ← choose top n devices with the largest Ti

15 return (k, n) and Vn

TABLE II: Cost (C) lower bound, as a function of wa and the
corresponding code rate k/n for the lower bound

wa 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.0
Cost (C) 1/N 0.6 0.8 0.91 0.98 1.0 1.0 1.0

Code Rate 1/N 0.35 0.5 0.65 0.8 1.0 1.0 1.0

When R-Drive selects between (k1, n1) and (k2, n2)
with the same k/n values, it calculates A(k1, n1, p) and
A(k2, n2, p), where p represents the average availability of
devices, and chooses the one with a larger value.
Q2: Which specific n devices? After deciding (k, n), R-
Drive will choose all devices with the remaining storage space
larger than F/k. Next, it sorts the selected devices based on
the expected remaining time in descending order. Finally, it
chooses the top n devices with the longest remaining time to
store the n file fragments.
Q3: How are algorithm input parameters decided? wa and
T should be set based on two factors - how important/mission
critical the file is, and how soon a user is expected to
access/read the data. As an example, for mission critical data
wa can be set high, e.g., 0.8-1.0. Additionally, the user can
specify an approximate T .

The complete algorithm for choosing (n, k) and the n de-
vices, is given in Algorithm 1. When analyzing the algorithm,
it is important to observe that there is a code rate for which
the cost is the lowest (optimal cost), as shown in Figure 7b.
The algorithm tries to achieve the optimal cost, regardless of
the selection of n and k values. For a particular (n, k), if
the code rate is similar to the optimal cost code rate, the
algorithm will select this (n, k), unless the devices do not
meet the storage and battery remaining time requirements (as
mentioned in equation 1). Table II shows the optimal cost for
variable wa and the code rates for which the optimal cost is
achieved.

A natural question may arise, if the cost for variable wa is
constant, why not use a look-up table to find the code rate with
the lowest cost? The answer is, choosing the code rate with
the lowest cost does not tell us the exact values of n and k

File Handler Cipher

RSock

Blocks Encrypted Blocks

Fragments

Metadata
Retrieve

Adaptive
Erasure Coding

 EdgeKeeperDirectory
Service

1
2

3

4

56

………
1 2 k

File

get()

Fig. 9: R-Drive file retrieval steps: obtaining from the directory
service the location of fragments, deciding which k fragments to
retrieve and asking RSock for their delivery, applying erasure coding
and re-creating the file from the decrypted blocks

and which devices can be used. As an example, for wa = 0.8,
the code rate 0.5 can be achieved by 15 different combinations
of (n, k). So, our algorithm not only chooses code rate with
lowest cost (hence n and k), but also chooses devices with
minimum required storage and battery remaining time.

D. R-Drive Data Retrieval

Data retrieval in R-Drive involves gathering all blocks of a
file and reconstructing it to its original form, as illustrated in
Figure 9. File retrieval is initiated by calling get() API function
or executing -get command. Directory Service first communi-
cates with EdgeKeeper and fetches the target metadata rnode,
given that an rnode for the target file exists and user has
permission to access the file. The fragLocation field in rnode
contains location information of all fragments for all blocks.
To reconstruct each block, the File Handler must retrieve
any k fragments out of n, where k ≤ n. To retrieve any k
fragments, the File Handler requests from EdgeKeeper a list of
devices with their remaining energy and selects k of those with
the highest remaining energy. Then, the File Handler sends
fragment requests to the k devices. Upon receiving a fragment
request, a device resolves it by replying with target fragment
to the requestor. When k fragment replies are received, the
File Handler employs Erasure Coding and Ciphering for block
decoding and decryption, respectively. When all blocks are
reconstructed, the original file is obtained by merging the
blocks. All fragment requests and replies are sent/received
through RSock.

E. R-Drive Command Handler

R-Drive provides a command line interface (CLI) for Linux
desktop users, to perform storage operations on remote de-
vices if the device operators allow it. R-Drive commands
are interpreted by the Command Handler. Command Handler
consists of a hand-written lexer and parser. Lexer takes an
input command as text stream, converts into a series of tokens
and parser converts the tokens into a parse-tree. The parse-tree
enables Command Handler to identify the type of command.
Below is the grammar R-Drive uses for file system commands.

COMMAND::= 'dfs' OPTION ARGUMENT
OPTION::= -put | -get | -mkdir | -ls | -rm

| -setfacl | -getfacl
ARGUMENT::= PATH | PERMISSION | PATH PERMISSION

Fig. 10: R-Drive Android application, allowing navigation of the
distributed file system and providing capabilities to add/remove files
and directories

(a) (b)
Fig. 11: a) NIST deployable used in Gypsum, CO and b) DistressNet-
NG deployable Manpack used in Disaster City, TX

PATH::= <local_path> | <rdrive_path>
| <local_path> <rdrive_path>

PERMISSION::= 'OWNER' | 'WORLD' | USERS
USERS::= GUID | USERS GUID
GUID::= <40 bytes ASCII printable characters>

Here local path means the local absolute path of a file in
local file system. rdrive path means either a file or a directory
path in the R-Drive file system. A GUID is a unique 40 bytes
long string comprising both characters and numbers.

IV. R-DRIVE IMPLEMENTATION AND EVALUATION

We implemented R-Drive as an Android app and as a
daemon process for Linux desktops. The implementation of
R-Drive has approximately 10,000 lines of Java code. The
app (shown in Figure 10) runs as an Android background
service. The File Handler exposes the R-Drive Java API which
is invoked by the user interface of the Android app. We
used BackBlaze [37] Reed-Solomon erasure coding library
(an open source implementation available for both academic
and commercial use) and javax.crypto for the 256 bit AES
encryption, as the Cipher.

For R-Drive performance evaluation we used both simula-
tions of the algorithms proposed and real system evaluations.
For the system evaluation we employed two rapidly deployable
systems, as shown in Figure 11: a) NIST - Public Safety
Communications Research (PSCR) deployable, equipped with
LTE (Star Solutions COMPAC-N) and Wi-Fi (Ubiquiti Edger-
outerX) router; and b) DistressNet-NG manpack consisting
of LTE (BaiCells Nova 227 eNB [38]) and Wi-Fi (Unify
802.11AC Mesh) connectivity and an Intel NUC as application

TABLE III: Achieved cost for different wa and Network Sizes (NS)

wa Lower Achieved Cost
Bound NS=30 NS=20 NS=10

1.0 0.00 0.2402 0.3613 0.66
0.9 0.6 0.6 0.6048 0.6782
0.8 0.8 0.8 0.8121 0.8360
0.7 0.9165 0.9165 0.9166 0.9183
0.6 0.9797 0.9797 0.9799 0.9807
0.5 1.0 1.0 1.0 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
od

e
R

at
e

(k
/n

)

wa

NS=10
NS=20
NS=30

(a)

 400

 800

 1200

 1600

 2000

 0 0.2 0.4 0.6 0.8 1

F’

wa

NS=10
NS=20
NS=30

(b)
Fig. 12: Impact of wa on: a) code Rate (k/n); and b) file size F ′,
for network sizes, NS=10, 20 and 30

server. We used 15 Android devices of Essential PH-1, Sam-
sung S8 and Sonim XP8 devices with Android OS versions
7.1, 8.0 and 10.0.

In our experiments, we controlled device availability
through another Android application which turns wireless con-
nectivity on and off, based on a given probability. Experiments
below were performed with link availabilities of 0.5 and 1.

A. Adaptive Erasure Coding Evaluation

In this section, we present simulations results on how the
parameter wa impacts the (k, n) obtained by our algorithm,
hence also for the code-rate and F ′. We also analyze the choice
of code-rate and it’s impact on the cost function. We simulated
network sizes of 10, 20, and 30 devices, for storing a 500MB
file, with an expected file availability time T of 300 minutes.
The storage Si and expected battery remaining times Ti for
nodes were generated pseudo-randomly with mean-variance
of (100, 20) and (300, 80), respectively. The simulations were
done for 30 different MEC scenarios and the results averaged.

1) Achieved cost as a function of wa: Table III shows the
average achieved cost for different wa and network sizes. With
a larger network size the cost function is computed over more
(n, k) choices, hence the algorithm achieves cost closer to
optimal value.

2) Impact of wa and Network Size on Code Rate and F ′:
Figure 12a shows that if wa increases, the code rate decreases.
This is expected, since the algorithm uses wa as weight for
Availability. With larger wa, the algorithm chooses a larger
n in an attempt to provide higher data redundancy, hence the
code rate decreases. Figure 12b shows F ′ as a function of wa.
F ′ increases exponentially with higher wa. Since the code
rate is higher for a network size 10, F ′ is higher compared to
network sizes 20 and 30.

3) Impact of wa and Network Size on selected storage and
battery remaining time: Figure 13 shows the average storage
capacity and battery remaining time for the nodes selected by
the algorithm. The results illustrate the fact that, on average

the algorithm chooses nodes with at least minimum required
storage capacity, and with higher battery remaining time. This
is due to the fact that, when two different solutions have the
same cost, the algorithm chooses the nodes with higher device
availability, as given by Equation 7.

 90

 100

 110

 120

 130

0.5 0.6 0.7 0.8 0.9 1.0

St
or

ag
e

Si
ze

 [M
B]

wa

NS=10
NS=20

NS=30

(a)

 280

 300

 320

 340

 360

 380

 400

0.5 0.6 0.7 0.8 0.9 1.0

Re
m

ai
ni

ng
 B

at
te

ry
 [V

]

wa

NS: 10
NS: 20

NS: 30

(b)
Fig. 13: Impact on wa on: a) storage size; and b) battery remaining
time, for different network sizes NS=10, 20, 30

B. Directory Service Resilience

We investigated the resilience of the R-Drive Directory
Service by measuring its startup time with different failure/-
configuration modes and under different replica settings. The
experiments were done using the NIST deployable system
(shown in Figure 11a) and Samsung S8 phones, connected
through LTE.

The experimental results are shown in Figure 14. In the
figure, we use the following notation for describing MEC
dynamics: (3R)+2C-1R=3R+1C denotes that, to a stable MEC
of 3 devices (i.e., 3 replicas), we simultaneously added 2
devices (i.e., “2C,” two clients) and removed 1 replica (i.e.,
“1R”). The resulting configuration is 3 replicas (i.e., “3R”) and
1 client (i.e., “1C”). As shown, we performed experiments for
three replica settings: 3, 5 and 7.

The results show that Directory Service becomes available
within 20s the first time the MEC is formed. For example,
in the 3 replica scenario, “(0R)+2C=2R” shows that two de-
vices are sufficient to start providing directory services within
20s, even when 1 replica is missing. Also, we observe that
adding clients to an already formed MEC that has maximum
number of replicas, does not impact the Directory Service.
In particular, the scenario “(3R)+2C=(3R)+2C” for the 3-
replica setting shows that the Directory Service is available
with minimal interruption (1-2s). Remarkably, even with a
high replica setting (e.g., 7), the R-Drive Directory Service
becomes available after approximately 20s.

The R-Drive Directory Service is impacted more by node
failures, as shown in the figure. For a 3-replica scenario, losing
2 node replicas will result in doubling the Directory Service
startup time. For example, in the “(3R)+2C-2R=3R” the MEC
loses 2 replica nodes, resulting in the loss of a quorum. It takes
about 55s for R-Drive Directory Service to re-configure, after 2
devices are added for a final configuration with 3 replicas (i.e.,
“3R”). Similar performance impact is observed for 5-replica
and 7-replica MECs, where the Directory Service startup time
is doubled, to 50-60s.

 0

 10

 20

 30

 40

 50

 60

 70

(0
R)+

2C=2R

(2
R)+

1C=3R

(3
R)+

2C=3R+2C

(3
R)+

2C-1
R=3R+1C

(3
R)+

2C-2
R=3R

(0
R)+

3C=3R

(0
R)+

5C=5R

(5
R)+

2C=5R+2C

(5
R)+

2C-2
R=5R

(5
R)+

2C-3
R=4R

(0
R)+

7C=7R

(4
R)+

1C=5R

(7
R)+

2C=7R+2C

(7
R)+

2C-2
R=7R

(7
R)+

2C-3
R=6RD

ir
e

ct
o

ry
 S

e
rv

ic
e

 S
ta

rt
-u

p
 T

im
e

 [
se

c]

Replica Setting

3 Replic a 5 Replic a 7 Replic a

Fig. 14: Directory Service startup time for variable EdgeKeeper
replica settings and different failure modes. Here R and C denote
the number of replicas and clients, respectively

 11

 12

 13

 14

 15

 16

1 2 4 8 10 12 15

Re
ad

 L
at

en
cy

 [m
se

c]

Metadata Size [KB]

Number of Replicas
1 3 5 7 9

(a)

 16

 18

 20

 22

 24

 26

 28

1 2 4 8 10 12 15

W
rit

e
La

te
nc

y
[m

se
c]

Metadata Size [KB]

Number of Replicas
1 3 5 7 9

(b)
Fig. 15: Metadata read (a) and write (b) latencies as a function of
metadata size, for link availability 1.0

C. Directory Service Latency

We used the same experimental setting from the previous
section to investigate R-Drive Directory Service latency for
metadata read and write requests. For this set of experiments
we varied the size of the metadata and the degree of resilience,
i.e., number of replicas. We did not simulate node failures
for these experiments. The results are shown in Figure 15.
We first observe that the amount of metadata has some
influence on latency, but rather minimal, for both read and
write metadata operations. We also note that the number of
replicas has different effects on the write operation than on
the read. Increasing the number of replicas results in lower
read latencies, primarily because closer (or more optimally
placed) replicas can be read from. In contrast, a write operation
is successful only after consensus is reached among replicas.
Thus, a higher number of replicas will require more time for a
successful write operation. We note, however, that the largest
increase in the write latency comes from 1-replica to 3-replica.
For a 1-replica scenario, the write latency is slightly larger
than the read latency. This is, primarily, because the latency
comes from nodes communicating with the replica node. Since
writing to the local file system does not benefit from caching,
the latency of a write operation is higher than for a read
operation.

D. R-Drive Data Read and Write Throughput

For this set of experiments we employed the DistressNet-
NG deployable system shown in Figure 11b with WiFi and
LTE connectivity, and 9 Android devices. Each phone stored
and retrieved 3GB of data simultaneously, comprising of file

TABLE IV: Processing overhead as percentage of total delay

Shamir AES Reed-Solomon
Read 5% 87% 8%
Write 3% 84% 13%

TABLE V: R-Drive energy consumption for different Android devices

Device Runtime Consumed Dist-NG
h:min % mAh Wh Wh

Samsung S8 3:30 12.5 377.4 1.5 3.5
Google Pixel 3:05 11.9 323.5 1.2 3.2
Essential PH1 3:15 12.6 381.8 1.5 3.8

sizes ranging between 10-200MB. As mentioned before, we
controlled the resiliency of R-Drive by turning wireless links
on/off with a given probability. We measured the read/write
throughput as a function of code rate, block size and link
availability (0.5 and 1.0).

The experimental results are depicted in Figure 16, The
results show, as expected, that the read/write throughput is
higher in a purely connected network compared to loosely
connected one. Also, increasing block size increases through-
put for both read and write. This is due to lower overhead
(communication and storage) of fewer blocks. Interestingly, for
most block sizes, throughput slightly drops with lower code
rates. We attribute this to the fact that lower code rates are
associated with higher n and k, resulting in more fragments to
be distributed or retrieved, respectively. We also compare the
data read/write throughput of R-Drive with that of MDFS [24].
MDFS is the closest to R-Drive in terms of the design. For
2MB files and (n, k) as (7, 3), MDFS provided 2.3MB/sec
and 2.0MB/sec for read and write, throughput respectively,
whereas R-Drive provides 11.5MB/sec and 6.5 MB/sec for
read and write, respectively.

E. R-Drive Overhead

To evaluate the overhead of R-Drive, we investigated the
execution time for the Adaptive Erasure Coding algorithm,
the processing time for encryption and erasure coding and the
energy consumption in R-Drive.
Adaptive Erasure Coding Algorithm Execution Time: We
ran the adaptive coding algorithm on a Samsung S8 An-
droid device. The average algorithm execution time (1,000
iterations) for NS of 10, 20, and 30 were 0.5 ms, 15.3
ms, and 101.6 ms, respectively. These results show that the
algorithm execution has a minimal effect on R-Drive file
creation operations.
Processing Latency: We measured the processing latencies
of components responsible for encryption key generation,
data encryption and erasure coding. The results are shown
in Table IV. The results show that data encryption takes the
majority of processing time.
Energy Consumption: We used the Battery Historian [39]
to obtain the Android battery usage for 100% to 0% battery
capacity. Table V shows R-Drive average energy consumption
for a continuous workload on different Android devices. The
results show that, if similar devices are used in field and used
continuously for storing and retrieving data from R-Drive, a
mobile device may last approximately 3.5h.

 6

 7

 8

 9

 10

 11

1 2 4 8 16 32 64 80

Re
ad

 T
hr

ou
gh

pu
t [

M
B/

se
c]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(a)

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 80

W
rit

e
Th

ro
ug

hp
ut

 [M
B/

se
c]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(b)

 10

 12

 14

 16

 18

1 2 4 8 16 32 64 80

Re
ad

 T
hr

ou
gh

pu
t [

M
B/

se
c]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(c)

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64 80

W
rit

e
Th

ro
ug

hp
ut

 [M
B/

se
c]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(d)
Fig. 16: Data read and write throughput, for 0.5 link availability (a, b) and 1.0 link availability (c, d)

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented the design, implementation and
evaluation of R-Drive, a resilient data storage and sharing
solution for MEC targeting disaster response and tactical
environments. R-Drive employs a novel Adaptive Erasure
Coding scheme, suitable for highly dynamic environments.
Experimental results show that R-Drive is resilient to node
failure and its execution incurs low overhead, thus making it
suitable to real-world MEC environments. R-Drive has been
implemented and integrated with DistressNet-NG applications.

REFERENCES

[1] E. Ahmed and M. H. Rehmani, “Mobile edge computing: opportuni-
ties, solutions, and challenges,” Future Generation Computer Systems,
vol. 70, 2017.

[2] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the internet of things: A case study,” IEEE Internet of Things Journal,
vol. 5, no. 2, 2018.

[3] R. Olaniyan, O. Fadahunsi, M. Maheswaran, and M. F. Zhani, “Op-
portunistic edge computing: Concepts, opportunities and research chal-
lenges,” Future Generation Computer Systems, vol. 89, 2018.

[4] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang, “Soft-
ware defined cooperative offloading for mobile cloudlets,” IEEE/ACM
Transactions on Networking, vol. 25, no. 3, pp. 1746–1760, 2017.

[5] A. Boukerche and R. W. Coutinho, “Smart disaster detection and re-
sponse system for smart cities,” in 2018 IEEE Symposium on Computers
and Communications (ISCC), pp. 1102–1107, IEEE, 2018.

[6] G. Otto, “DHS sees wearables as the future for first responders,” 2014.
[last accessed Aug, 2022].

[7] A. Rahman, E. Hassanain, and M. S. Hossain, “Towards a secure mobile
edge computing framework for hajj,” IEEE Access, vol. 5, 2017.

[8] Dropbox, “Dropbox.” [last accessed Aug, 2022].
[9] Google. Google Drive. [last accessed Aug, 2022].

[10] Microsoft. OneDrive. [last accessed Aug, 2022].
[11] S. Bhunia, R. Stoleru, A. Haroon, M. Sagor, A. Altaweel, M. Chao,

M. Maurice, and R. Blalock, “EdgeKeeper: Resilient and lightweight
coordination for mobile edge clouds,” in IEEE International Conference
on Mobile Ad-Hoc and Smart Systems (MASS), 2022.

[12] H. Chenji, W. Zhang, R. Stoleru, and C. Arnett, “DistressNet: A disaster
response system providing constant availability cloud-like services,” Ad
Hoc Networks, vol. 11, no. 8, pp. 2440–2460, 2013.

[13] M. Chao and R. Stoleru, “R-MStorm: A resilient mobile stream pro-
cessing system for dynamic edge networks,” in 2020 IEEE International
Conference on Fog Computing (ICFC), pp. 64–72, 2020.

[14] A. Haroon, M. Sagor, M. Maurice, L. Jin, R. Stoleru, and R. Blalock,
“On edge coordination in highly dynamic cyber-physical systems for
emergency response,” in 2022 Workshop on Cyber Physical Systems for
Emergency Response (CPS-ER), pp. 7–12, 2022.

[15] A. Altaweel, C. Yang, R. Stoleru, S. Bhunia, M. Sagor, M. Maurice,
and R. Blalock, “Rsock: A resilient routing protocol for mobile fog/edge
networks,” Ad Hoc Networks, vol. 134, p. 102926, 2022.

[16] Apache. Storm. [last accessed Aug, 2022].
[17] N. R. Paiker, J. Shan, C. Borcea, N. Gehani, R. Curtmola, and X. Ding,

“Design and implementation of an overlay file system for cloud-assisted
mobile apps,” IEEE Transactions on Cloud Computing, vol. 8, no. 1,
pp. 97–111, 2017.

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), pp. 1–10, IEEE, 2010.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, pp. 29–43, 2003.

[20] D. Scotece, N. R. Paiker, L. Foschini, P. Bellavista, X. Ding, and
C. Borcea, “Mefs: Mobile edge file system for edge-assisted mobile
apps,” in 2019 IEEE 20th International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM), IEEE, 2019.

[21] D. Dwyer and V. Bharghavan, “A mobility-aware file system for partially
connected operation,” ACM SIGOPS Operating Systems Review, 1997.

[22] A. Pamboris, P. Andreou, I. Polycarpou, and G. Samaras, “FogFS: A Fog
File System For Hyper-Responsive Mobile Applications,” in 2019 16th
IEEE Annual Consumer Communications & Networking Conference
(CCNC), pp. 1–6, IEEE, 2019.

[23] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices us-
ing mapreduce,” tech. rep., Carnegie-Mellon University Pittsburgh PA
School of Computer Science, 2009.

[24] C.-A. Chen, M. Won, R. Stoleru, and G. G. Xie, “Energy-efficient fault-
tolerant data storage and processing in mobile cloud,” IEEE Trans. Cloud
Computing, vol. 3, no. 1, pp. 28–41, 2015.

[25] Google. Google Files. [last accessed Aug, 2022].
[26] Smart Utils Dev Team. SHAREit. [last accessed Aug, 2022].
[27] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[28] R. Zhu, D. Niu, and Z. Li, “Online code rate adaptation in cloud storage
systems with multiple erasure codes,” tech. rep., University of Alberta
Department of Electrical and Computer Engineering, 2016.

[29] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure
codes in HDFS,” in 13th USENIX Conference on File and Storage
Technologies (FAST), 2015.

[30] M. Zhang, Y. Bai, S. Yuan, N. Tian, and J. Wang, “Design and
implementation of file multi-cloud storage system based on android,”
in 2020 IEEE 11th International Conference on Software Engineering
and Service Science (ICSESS), 2020.

[31] Y. Shu, M. Dong, K. Ota, J. Wu, and S. Liao, “Binary reed-solomon
coding based distributed storage scheme in information-centric fog
networks,” in 2018 IEEE 23rd International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD), pp. 1–5, IEEE, 2018.

[32] M. Chao and R. Stoleru, “R-MStorm: A resilient mobile stream pro-
cessing system for dynamic edge networks,” in 2020 IEEE International
Conference on Fog Computing (ICFC), pp. 64–72, IEEE, 2020.

[33] ArcGIS. Survey123. [last accessed Aug, 2022].
[34] Google, “Google Backup and Sync.” last accessed Aug, 2022].
[35] Apache, “ZooKeeper Programmer’s Guide.” [last accessed Aug, 2022].
[36] A. Shamir, “How to share a secret,” Communications of the ACM,

vol. 22, no. 11, pp. 612–613, 1979.
[37] B. Beach, “Backblaze Reed-Solomon erasure coding source code.” [last

accessed Aug, 2022].
[38] Baicells, “Baicells Nova 227 eNB.” [last accessed Aug, 2022].
[39] Android, “Battery Historian.” [last accessed Aug, 2022].

https://www.fedscoop.com/dhs-wearables-first-responders/
https://www.dropbox.com/?landing=dbv2
https://www.google.com/drive/
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://storm.apache.org/
https://files.google.com/
https://play.google.com/store/apps/details?id=com.lenovo.anyshare.gps&hl=en_US&gl=US
https://survey123.arcgis.com/
https://support.google.com/drive/answer/2374987
https://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html
https://www.backblaze.com/blog/reed-solomon/
https://na.baicells.com/product/Details?id=c7b62a86-c748-4b71-aeb4-3f01bed0b026
https://developer.android.com/topic/performance/power/setup-battery-historian

	Introduction
	Background and State of the Art
	Mobile Edge Clouds for Disaster Response and Tactical Environments
	Motivation and State of the Art
	Erasure Coding for Resilient Data Storage

	R-Drive System Design
	R-Drive UI and API design
	Directory Service and Access Control
	R-Drive Data Storage
	R-Drive Data Encryption
	Adaptive Erasure Coding

	R-Drive Data Retrieval
	R-Drive Command Handler

	R-Drive Implementation and Evaluation
	Adaptive Erasure Coding Evaluation
	Achieved cost as a function of wa
	Impact of wa and Network Size on Code Rate and F'
	Impact of wa and Network Size on selected storage and battery remaining time

	Directory Service Resilience
	Directory Service Latency
	R-Drive Data Read and Write Throughput
	R-Drive Overhead

	Conclusions and Future Work
	References

