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Abstract—Cognitive Radio Network (CRN) enables secondary
users to borrow unused spectrum from the proprietary users in a
dynamic and opportunistic manner. However, dynamic and open
access nature of available spectrum brings a serious challenge
of sustenance amongst CRNs which makes them vulnerable to
various spectrum etiquette attacks. Jamming-based denial of
service (DoS) attack poses serious threats to legitimate commu-
nications and packet delivery. A rational attacker targets certain
transmission characteristics to find the highest impacting commu-
nication of CRN and causes maximum disruption. In this paper,
inspired by the honeypot concept in cybercrime, we propose
a honeynet based defense mechanism, which aims to deter the
attacker from jamming legitimate communications. The honeynet
passively learns the attacker’s strategy from the past history
of attacks and actively adapts preemptive decoy mechanisms
to prevent attacks on legitimate communications. Simulation
results show that the with help of honeynet mechanism, CRN
successfully avoids jamming attacks and thereby improves system
performance in terms of packet delivery ratio.

Keywords—Cognitive Radio, Jamming, Honeynet, Stochastic
Learning

I. INTRODUCTION

Dynamic Spectrum Access (DSA) based Cognitive Radio
(CR) [1] aims to provide a solution for spectrum scarcity by
allowing Secondary Users (SUs) to use idle licensed spectrum
on a non-interfering basis. In contrast to conventional wireless
technologies, a CRN can reconfigure itself by controlling
its operating frequency, channel bandwidth, modulation tech-
niques, transmission power, etc. [1]. Because of the licensed
primary user (PU) priority, SUs must periodically sense the
channel of communication for the presence of the PU. If
the current channel is blocked by presence of PU of that
channel, SU must switch to another free channel. Even though
the PU protection mechanisms have been proactively studied,
neither the secondary-secondary interaction mechanisms nor
the protection of secondary users from malicious disruption
has been specifically defined or addressed [1], [2], [3].

The “open” philosophy of the cognitive radio paradigm
makes CRN susceptible to Jamming based Denial of Service
(DoS) attacks by smart malicious users. An attacker can
scan through channels, identify legitimate SU communications
and then transmit a jamming signal on the same channel
or fragment of the channel causing disruptive interference to
the SU, which in effect can completely block the legitimate
SU’s transmission [1], [2], [3]. However, note that, from an
intelligent and rational attacker’s perspective, jamming a com-
munication randomly will not yield optimal result; rather an
attacker can be most disruptive if it targets the communication
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that impacts the CRN most severely upon interruption [3],
[4], [5], [6]. The attacker succeeds in determining highest
impacting communication by observing certain transmission
characteristics as for example, highest transmission power,
highest data rate, modulation scheme, packet inter arrival
time, quality of route with end-to-end acknowledgments, etc
[5], [7]. Again, an attacker may also use combination of
transmission characteristics instead of a single characteristics
to find out the highest impacting communication. To defend
against such attackers, a CRN must learn about the strategy
(the targeted transmission characteristic(s)) that the attacker
uses to figure out the highest impacting communication. The
attacker’s strategy of finding highest impacting communication
can be used as a trap by the defending CRN to detract the
attacker from attacking legitimate communications.

In this paper we propose CR-Honeynet, a honeynet based
defense mechanism where the CRN passively learns the strat-
egy of the attacker using stochastic learning, and then place
an active decoy namely honeynode to entice the attacker
for jamming the honeynode transmission. Thus, the attacker
gets a false impression of attacking the highest impacting
communication whereas legitimate SU communications avoid
attacks and reduce attack impact on the CRN. One or multiple
SUs act as honeynode in each transmission period. The SU
acting as honeynode refrains from transmitting its own data
packets and transmits garbage data with specific transmis-
sion characteristics. Such transmission characteristics lure the
attacker to jam honeynode’s transmission. The transmission
characteristics that the attacker aims is learned from the history
of attacks. As an example, if an attacker targets highest
transmission power then the honeynode transmits with highest
possible power while all other SUs keep their transmission
power lower than honeynode’s power.

The evolving nature of the attacker as well as dynamic
and stochastic nature of the wireless medium pose several chal-
lenges to the learning mechanism. Suspicious of being trapped,
an attacker may intentionally change its strategy of finding
highest impacting communication. Also, due to erroneous and
stochastic nature of wireless medium, an attacker may err in
sensing CRN’s highest impacting communication. Such error
may results in attack on different SU communication instead
of the communication with desired/targeted characteristics.
Such circumstances must be taken into account for effective
luring. In this paper, we use statistical monitoring threshold
to decide whether the changes in recent attack pattern is
due to error in attacker’s sensing or whether the attacker
has changed its attacking strategy. Our proposed stochastic
learning mechanism correctly detects attacker’s strategy with
a probability of 0.958 within 15 iterations and identifies
change in attacker’s strategy dynamically with 95% confidence



interval within 5 iterations. The simulation results show that
CR-Honeynet learns attacker’s strategy correctly and adapt
with attacker’s strategy change dynamically which in effect
enhances CRN’s performance in terms of packet delivery ratio.

The rest of the paper proceeds as follows: in section
II, we discuss the motivation for our work and background
studies. section III presents our proposed model. In section IV
we describe our simulator and then analyzes CR-Honeynet’s
performance. Finally section V concludes the paper.

II. BACKGROUND STUDIES

In traditional wireless networks, the user of a particular
channel has proprietary access to that channel and thus has
the right to penalize any trespassers. The threat of penalty
can discourage potential attackers. However, if a channel is
being accessed by a CRN, the SUs are only borrowing the
channel, and they have no grounds from which they can fend
off attackers. Thus, SUs are left vulnerable against malicious
jamming attacks [1]. Jamming can be broadly categorized into
two types [8], [9]. In physical layer jamming, the attacker
jams the channel of communication by sending strong noise or
jamming signals. The data-link / MAC layer jamming targets
several vulnerabilities present in the MAC layer protocol.
Jamming essentially means disrupting communication of le-
gitimate users.

To illustrate the effect of jamming, we ran an experiment
in our lab. Two computers were configured to communicate
over a WLAN (IEEE 802.11-a) channel 36 (centered at 5,180
MHz). When communicating in full throttle it achieved end-to-
end throughput of 11 Mbps. We observed the Power Spectral
Density (PSD) over the channel using the Wi-spy spectrum
analyzer [10]. The PSD for normal communication is shown
in Fig. 1a. The plot clearly shows that the transmission is
using a 20 MHz channel as well as some energy leakage to
the neighboring channels. Then we started transmitting a very
narrow band jamming signal of 2MHz from a GNU Radio [11]
enabled USRP board [12]. At the presence of the jamming
signal, the genuine transmission was blocked completely as
can be viewed in Fig. 1b where only the jamming signal is
visible. The attacker is exploiting the vulnerability of IEEE
802.11 MAC that enforces a node to sense the channel before
transmission. When the legitimate transmitter senses that there
is some energy on the channel, it refrains from transmission.
In effect, the attacker successfully jams the channel with very
little cost. Irrespective of the jamming technique, a target
node suffers significant amount of data or packet loss and
sometimes completely loses the channel. CRN being a next-
generation intelligent network should incorporate a mechanism
to mitigate, avoid or prevent these attacks.

Due to the noise in wireless medium, detection of jamming
is crucial in combating with an attacker. A good survey of dif-
ferent detection mechanisms for jamming based DoS attack has
been presented in [5]. It is difficult to correctly detect jamming
based on a single system parameter. Several system parame-
ters such as received-signal-strength, packet-send-ratio, packet-
delivery-ratio, carrier-sensing-time etc. are used for modeling
jamming detection system. Consistency check among system
parameters are used for more efficient detection. Authors of
[13] have classified spectrum usage anomaly detection data
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Fig. 1: PSD for data communication and jamming signal

fusion algorithms. Through different fusion algorithms, anoma-
lies in spectrum usage can be detected successfully with higher
efficiency. A cross layer detection mechanism of anomalous
spectrum attack has been proposed in [14] where, the network
maps the jammed geographical region using spectrum sensing
reports sent from each SUs that are equipped with localization
module.

Already proposed defense mechanisms against jamming
based DoS attack can be broadly categorized into Channel
Surfing, Spatial Retreat, Mapping Jammed Region, Spread
Spectrum, etc. In Channel Surfing technique, the node which
is under attack migrates its channel of communication upon
detection of jamming [9]. Authors of [15] proposed proactive
frequency hopping where the nodes change its channel of
operation irrespective of attacks to avoid jamming. The authors
considered fixed number of channel of the attacker that is
known to a SU, which in reality is difficult to achieve. In Spa-
tial Retreat [16] mobile nodes relocate themselves physically
to avoid jamming. The constraint of this approach is that the
nodes are required to be highly mobile which is not realistic for
static nodes. In Mapping Jammed Region [17] approach, the
multi-hop and intensely populated CRN avoids routing through
the links that have been affected by jamming. This mechanism
fails if there is only one path and that link is attacked. In Spread
Spectrum [18] technique, low bandwidth data stream uses
higher bandwidth channel to pass the information irrespective
of jamming. Although this mechanism increase reliability of
communication it provide very poor data rate. A single channel
honeypot based channel surfing to mitigate jamming-based
DoS attacks has been proposed in [8]. The network dedicates
a node as honeypot to monitor attacks and upon detection of
attack, the network switches its channel of operation which
results in long time communication disruption. Majority of
the previous works have assumed that the attacker is naive
and does not evolve. Thus, none of these works have focused
on learning the strategy of attacker where the attacker is
also dynamic and changes its strategy of choosing the target
communication characteristics.

In our previous work [19], we introduced the concept of
honeynet in CRN and presented the benefits of dedicating
one SU as honeynode in a multichannel CRN provided the
honeynode is successful of enticing the attacker. We presented
a stochastic model for honeynode selection which proved that
in the case of uniform traffic, selecting a SU with lowest
queue size is optimal in terms of overall system performance.
Extending on previous work, in this paper we present CR-
Honeynet, where the CRN learns the strategy of the attacker
and then dedicates one SU as honeynode. Honeynode acts as



the optimal target for the attacker so that the attacker gets false
satisfaction of attacking highest impacting SU communication,
thus reducing attack impact on other legitimate communica-
tions.

III. PROPOSED MODEL

A. Model for attackers

In this paper we consider three types of attacking strategies,
as follows:

I: Attacker targeting a particular channel.

II: Targets specific SU transmission characteristic(s).

III: Randomly targeting channel with active SU transmis-
sion.

Attacking strategy of type I and III causes less harm on
a CRN as it does not search for the best communication that
causes the highest impact in CRN. However, an intelligent
and rational attacker of type II can choose any transmission
characteristics to determine the best communication for attack
that causes highest impact on the CRN. From the CRN’s
point of view, it is difficult to generate such characteristic
space. Such targeted characteristic space of an attacker can
be learned by two methods: manually by domain experts or
through automatic learning from data obtained for long time.
For the first step, we are dealing with the first method and
wish to extend our model to perform the second option and
learn an attacker’s possible strategical view points by automatic
learning. We present a generalized model considering the
d possible transmission characteristics or a combination of
transmission characteristics.

B. Honeynet Defense mechanism

To protect PU transmissions, SUs are required to perform
periodic spectrum sensing and evacuate promptly upon the
return of the PU. SUs scan the wireless environment for
free channels in the sensing period (Ts). During transmission
period (Tt), a SU transmits packets through its own channel
dedicated by a centralized controller. We assume that a SU
cannot switch its channel during the transmission period as it is
unaware of the condition of the other channels and can switch
only on the next transmission period. Upon being attacked, all
data packets transmitted by the SU are lost. In CR-Honeynet,
the central controller assigns the role of honeynode to a SU
at the beginning of each transmission period. Fig. 2 illustrates
this channel allocation based on time domain (Sensing period
not shown). Due to the error of the attacker or strategy change
of the attacker, some attacks are trapped by honeynode trans-
mission, and others disrupt legitimate SU communications.
We define a parameter, attractiveness of honeynode (ξ) as
the probability that the honeynode transmission is attacked,
conditional on observing a jamming attack.

When acting as a honeynode, a SU doesn’t transmit its
packets, instead, it queues all its incoming packets and trans-
mits garbage data packets. Honeynode allocation results in
more delay as well as packet drop due to finite buffer sizes
for the chosen SU, both of which are undesirable. If the
attractiveness of the honeynet (ξ) is low, then the CRN will
suffer the delay caused by honeynode allocation as well as the

Fig. 2: A snapshot of CR-Honeynet channel allocation

packet drop with a probability of (1 − ξ) due to the attacks
on legitimate SUs other than the one chosen as honeynode.
The threshold, lowest attractiveness of the honeynet (ξ∗) is
the value where the net gain is zero; below ξ∗ the CRN is
better off facing the loss from the attacks than dedicating one
SU intending to lure the attacker.

In accordance to an attacker’s strategies, we define the
following honeynode strategies:

• If the attack strategy is believed to be of type-I then the
vulnerable channel will be assigned to the honeynode.

• If the attack strategy is believed to be of type-II then
the actual target property should be learned and used
as a lure for the honeynode.

• If the attack strategy is believed to be of type-III then
we use a special honeynode strategy that delays all
but the honeynode’s transmissions in order to reduce
the number of vulnerable channels to 1.

If there are C available channels, then an attacker must
sense for activity on each of them. Let’s assume switching a
channel incurs a delay of κ (κ = 7.6ms has been measured
for Atheros WiFi [15]). The attacker needs at most Cκ time
units to scan all available channels for activity. Under the
special strategy we must therefore delay all SUs at least Cκ
units of time beyond the sensing period, during which only
the honeynode will transmit. When using the special strategy
there is an added loss or cost of luring as all the other SUs
are delayed in their transmissions, albeit much less than the
delay caused to the chosen honeynode. So this strategy should
be avoided by CR-Honeynet if possible. In contrast, type-III is
the only strategy that increases attractiveness of honeynet (ξ)
to 1.

C. Stochastic Model

We assume that at time slot n the attacker’s strategy Sn fol-
lows a random switching process, with consecutive switching
times Tk ∈ N. The model need not be a Hidden Markov Model,
but we assume that the holding times hk = Tk+1−Tk are long
enough for learning. We will specify the exact assumption later
on.



The base model for an attacker with a type-II strategy is
stated now. Because of measurement errors, the attacker may
not always be successful in identifying the correct communi-
cation to attack. Let p1 denote the probability of attacking the
communication with the target characteristics. We will assume
that the number of available channels is larger than d, and use
d of the SUs as learning probes, each with a different target
property. Counting only the time slots when one of the probes
is attacked, the total number of attacks to each of the probes
within n such time slots is modeled as a multinomial random
variable with probabilities:

p1(θ) =
θ

θ + d− 1
; pk(θ) =

1

θ + d− 1
, for i ∈ {2, 3, . . . , d},

(1)
where θ > 1.

The above model corresponds to the situation where probe
k = 1 is targeted and hit with probability p1 < 1. Under
error measurement, any other probe will be attacked with equal
probability pi, i 6= 1. The number θ = p1/pi provides the ratio
between p1 and the rest. For the base model, using the fact
that all other probabilities are equal, θ = (d− 1)p1/(1− p1).

Define the function:

φ(θ, n) =
∑

y∈P(n)

n!

y1! y2! , . . . yd!
p1(θ)

y1

(
p1(θ)

θ

)∑d
i=2 yi

(2)
where the summation is over the set of all possible observations
of a sample of size n of the multinomial with parameters (eq.
1) where the first component dominates the others, that is:

P(n) =

{
y ∈ Nd :

d∑
k=1

yi = n, and y1 ≥ yi; i ≥ 2

}
.

It is straightforward to show that this is the exact
probability of correct selection in a sample of size n
from the base model when the maximum likelihood es-
timator is used. Specifically, let Yi(n) count the num-
ber of attacks to probe i under the base model, so that:
(Y1(n), Y2(n), . . . Y3(n)) ∼ M(p(θ), n), then the MLE for
the parameter pi is simply p̂i(n) = Yi(n)/n and φ(θ, n) =
P(Y1(n) = max(Y1(n), . . . , Yd(n)).

Let α ∈ (0, 1) be a confidence level for statistical signifi-
cance. Then under the base model we can calculate the sample
size required to ensure a probability of correct selection of at
least 1− α:

N∗(θ, d) = min (n : φ(θ, n) ≥ 1− α) . (3)

Bechhofer et al.[20] have tabulated the function φ(θ, n) for
d = 2, 3, 4 using various values of θ and n. For example,
if d = 4, then a sample size of n = 25 ensures a correct
selection with level α = 0.200579 when θ = 2, and with level
α = 0.038559 when θ = 3.

Suppose that honeynet correctly identifies a lure, but p1 <
ξ∗. Clearly, the best it can do here is to use its (correct) guess
for the honeynode, but this will provide at most a probability
p1 that the honeynode will be attacked. Because p1 is below
the threshold, it will not be worth using honeynode in this case
and we use special honeynet strategy similar to type-III. Thus,

such values of ξ∗ provide a threshold value θ∗ = (d−1) ξ∗
(1−ξ∗)

below which it is not worth using honeynode.

Definition: We call a naive attacker one of type II where the
probability of error in measurement is lower than 1− ξ∗, and
we assume that P(hk < N∗(θ∗, d)) = 0.

The above definition says that this type of attack is fairly
accurate (usually p1 ' .85) and also that the strategy is kept
long enough to learn the target probe. Specifically, because
θ ≥ θ∗ for a naive attacker, then N∗(θ, d) ≤ N∗(θ∗, d) if we
use the MLE to identify the target with argmax(Yi(n)) for
n ≈ N∗(θ, d).

D. Learning Attacker’s strategy

When the learning mechanism starts, given a confidence
level α, the number n = N∗(θ∗, d) is calculated as a first
estimate for an adequate sample size to detect type II attackers.
When d < C it is possible that error in measurements results in
false attacks to communications that have not been allocated
any lures. Thus, we will focus only on time slots when attacks
happen to lures. According to our model, this “sampled”
process corresponds to the base model for attackers of type-II.
Given n, define τ(n) as the total number of time slots required
to see n attacks to the lures.

During the learning phase, the d different lures for type-II
attacks are assigned to d different communications among the
available ones with uniform probability and no honeynode is
yet allocated. Let Yi(0) = 0; i = 1, . . . , d and define for each
i = 1, . . . , d and the counting processes:

Yi(k) = Yi(k − 1) + 1{i-th lure is attacked at time k}

for k = 1, 2 . . ., where the notation 1{A} stands for the
indicator function of event A (or Dirac delta). In parallel,
define C(1) = c, if c is the first channel to suffer an attack,
and let

C(k + 1) = C(k)1{channel c is attacked at time k + 1}.

Because we have allocated the lures randomly among SU
communications, it follows that

P(C(k) = 1 | type II or III) ≤ max

{(
1

d

)k
,

(
1

C

)k}

Define n0 as the smallest power that makes this probability
smaller than our given confidence level α, that is, when d < C

n0 = dlog(1/α)− log(d)e.

The number of tests to check for type I is thus typically very
small. For example, if α = 0.001, d = 2 then n0 = 7, for
α = 0.005 and d = 6, n0 = 4.

If C(n0) = c, we declare having learned that the attack is
of type I and we identify c as the target channel. From this
point onwards, we place the honeynet in this channel and keep
monitoring. Because attacks of type I are not subject to error
in identifying the channel, as soon as C(k) = 0 we declare a
regime change and re-set the learning phase.

Otherwise, if C(n0) = 0 then we keep assigning lures
to channels for as many time slots are required to observe



n = N∗(θ∗, d) attacks to lures. Gelfand et al.[21] provides
a comparison between various estimators and confidence in-
tervals for p̂1. In particular, his findings support the fact that
under attacks of type II the approximate confidence interval
based on the CLT is adequate, even for small to moderate
sample sizes. Following this approximation, if

p̂1 − 1.96

√
p̂1(1− p̂1)

n
≥ ξ∗ (4)

then we declare having learned that the strategy is of type
II and we identify the lure. From this time onwards, we use
the honeynode with that lure and start the monitoring phase.
Notice that by construction, naive attacks are ensured to be
correctly identified with probability at least 1− α.

If (eq. 4) does not hold, then we do not have significant
evidence that our candidate lure will be sufficiently effective.
From this point onwards (whether the attacker is of type II
but with large measurement errors, or of type III) we use the
special honeynode allocation by delaying all other SUs. It is
important to note that while the regular honeynode entails a
delay for the chosen SU, the special strategy delays all of the
rest of the SUs, albeit by a much smaller amount of time.

E. Regime change detection: monitoring phase

Once the learning period is over, the corresponding hon-
eynet strategy is used and honeynet keeps monitoring the attack
counts, keeping track of running window averages. This is the
monitoring phase where the honeynet is sensing for a possible
change in attacker’s strategy, as follows.

If the honeynet is under the assumption of a type I attack,
then it keeps track of C(k), k ≥ n0 until the first time slot
where C(k) = 0. Then it restarts the learning phase.

If the honeynet is under the assumption of a type II naive
attacker then it uses sliding window averages to test for regime
changes. During the monitoring phase the honeynet uses the
detected lure for the honeynode allocation. Honeynet’s first
monitoring test uses a standard control chart for frequencies,
and the second proposed method uses a regression for the slope
of the frequency of attacks. Let p̂1(k); k ≥ n be as in (eq. 5)
re-calculated with increasing observations beyond the initial
horizon n and call

L(k) = p̂1(k)− 3

√
p̂1(k)(1− p̂1(k))

w
.

Given a window of size w time slots, let ξ̃w(k) be the estimate
of p1 (and also of ξ) for time slot k > n using the observations
(Y(d)(k − w), . . . , Y(d)(k)). As soon as ξ̃w(k) < L(k), the
honeynet declares a change of regime and restarts the learning
phase (resetting all counters).

The regression test works very similarly. (To complete,
regression with the window and test for H0 : β < 0, where β
is the slope or method of residuals).

Finally, if the honeynet is operating under the assumption
of a type III attack or a type II attack for small ξ, then
honeynode’s current strategy is the special honeynet strategy
that delays all but the honeynode. The honeynet keeps a
new counter H(k) = H(k − 1) × 1{honeynode is attacked},
initialized at the value 1. As soon as the attack goes to another

channel (H(k) = 0), the honeynet declares that the attacker
is not aiming at random, but it must be targeting now either
a specific channel or a specific property of the transmissions.
Then the honeynet restarts the learning phase.

IV. SIMULATION AND RESULTS

A. Simulator

We coded a tick based simulator [22] using Python for
simulating the CR-Honeynet. In the simulation we have con-
sidered 20 SUs and 1 attacker which can effectively attack
one SU communication. The CR-Honeynet dedicates 1 SU as
honeynode in each slot. The attacker follows algorithm 1 and
the honeynet follows algorithm 2. All SUs generate packets
in accordance with Poisson process and queue them while in
sensing period or when that SU is acting as a honeynode.
During transmission period, SUs that are not acting as hon-
eynode transmit packets from the queue. Packet transmission
time (Sn) follows uniform distribution of 0.1 - 1.7 ms. A
sensing Period (Ts) of 50 ms and a transmission Period (Tt) of
950 ms has been considered for cognitive cycle. We consider
attacker has target transmission characteristics (d) space as 4.
From the CRN’s point of view, attractiveness threshold (ξ∗)
is considered as 0.6. Type-I learning horizon (n0) and Type
II learning horizon (N∗(θ∗, d)) are calculated as 5 and 15
respectively. We have run the simulation for 5,000,000 ms
simulation time with 100,000 ms as warm-up time 1.

Algorithm 1: Algorithm for attacker
1 if strategy = attack particular channel then
2 scan channel c ∈ C in the initial stage of Tt
3 if SU is active on c then
4 attack on channel c
5 end
6 else if strategy = attack transmission characteristics x

then
7 Scan all ci ∈ C at initial stage of Tt
8 attack the channel which have highest x
9 else if strategy = attack randomly then

10 Scan all ci ∈ C at initial stage of Tt
11 attack randomly a channel c where SU is active
12 end

B. Learning attacker’s strategy

We plot φ(θ∗, n) (eq. 2) with respect to learning period
(N∗) in Fig. 3. We can clearly see that with an increase in
N , confidence level also increases. We have defined earlier,
confidence level for statistical significance (α = 1−φ). From
(eq. 3) we can get the optimal N∗. For our simulation we
have considered ξ∗ = 0.6. We see that N∗ = 15 ensures
correct learning with level α = 0.015 for d = 4. From the
figure we can conclude that for a certain desired confidence
of learning (φ(θ∗, n)), an increase in the number of lured
characteristics (d), results in a decrease in required slots
for learning (N∗). In another way, the more transmission
characteristics or combination of transmission characteristics

1To obtain reliable steady state results for system staring with empty queue,
a simulator run for warm-up period [22] without recording data. Once the
warm period is over simulator starts gathering data



Algorithm 2: Algorithm for Honeynet
1 Calculate n0, N∗ based upon d and ξ∗
2 Reset all counters such as y, n etc.
3 Run initial learning phase for n0 slots
4 if all attack happens on channel c ∈ C then
5 Put honeynet on c in every slot until attack

observed on other channel.
6 Go to step 2
7 else
8 Continue counting for n = N∗(θ∗, d) slots
9 if p̂1 − 1.96

√
p̂1(1− p̂1)/n ≥ ξ∗ then

10 lure = argmax(y)
11 put honeynode with lure on every slot until

ξw(k) < L(k)
12 Go to step 2
13 else
14 Use special honeynet strategy until honeynode

is not attacked. Go to step 2.
15 end
16 end
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Fig. 3: Confidence level of Learning

an attacker can target, CR-honeynet takes lesser time to learn
with the same confidence.

Fig. 4 provides an illustration of a learning phase. In this
scenario, the attacker with type II strategy is aiming for lure 2
(the lure is characteristics of transmission) to attack. Lure 2 is
actually attacked with a probability 0.8. The actual attacks on
the various lures are shown on the upper subplot. The middle
subplot depicts P̂ for the different lures calculated using (eq.

5). The third subplot provides p̂1− 1.96
√

p̂1(1−p̂1)
n which can

be taken as a measure of learning. With d = 4 and ξ∗ = 0.6,
the probability of correct selection after N∗ = 15 samples is
0.985.
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Fig. 4: Depiction of Learning while d = 4

Fig. 5: Honeynet Learning phase corresponding to attacker’s
strategy change from I to II and then to III

C. Dynamic evolution with change in attacker’s strategy

Fig. 5 and 6 provide the results for different experiments,
each of which corresponds to a different sequence of attack
processes {Sn;n = 1, 2, . . .}. The upper subplots provide the
attacker’s strategy. Yellow, green and red colors indicate type-I,
type-II and type-III attacking strategies respectively. Blue dots
indicates the attacker’s aimed transmission characteristics to
find highest impacting communication. Here we have used 4
types of lure, i.e. transmission characteristics (d = 4).

Middle subplots give CR-Honeynet’s observation of p̂ (eq.
5) for different lures. It uses the MLE estimators for the two
highest probabilities:



Fig. 6: Honeynet Learning phase corresponding to attacker of
type II and attacker is changing its target lure

p̂1 =
Y(d)(τ(n))

n
; p̂2 =

Y(d−1)(τ(n))

n
, (5)

where the notation (x(1), . . . , x(d)) is the usual notation for
the ordered statistics.

In lower subplots of these 3 figures, we present phases
of Honeynet. Background colors Grey, yellow, green and red
indicate the learning phase, type-I, type-II and type-III defense
strategies respectively. Then we plot the estimation of CI =

p̂1 − 1.96
√

p̂1(1−p̂1)
n in the learning phase. We can see that

with increase in slots, CI is increasing. When the learning
phase is over and honeynet decides which strategy to take, it
change its phase. When it detects a regime change, it enters
to the learning phase again. When it is in type-II honeynet
strategy, the honeynet monitors L(k) and ξ̃w. Honeynet enters
learning phase when ξ̃w ≤ L(k). An approximate test of level
0.05 which decides whether the attack is of type II or III is to
test if T > 0, for the statistics:

T = (p̂1 − p̂2)− 1.96

√
p̂1(1− p̂1) + p̂2(1− p̂2)− p̂1 p̂2

n
.

If T ≤ 0 then we infer, the attacks are “sufficiently
random” between at least two main contenders.

Fig. 5 shows how the honeynet learns the change of strategy
of attacker dynamically. We can see that, for type-I attack,
honeynet learns in 5 iterations. To distinguish between type II
and III, honeynet takes 15 slots. When the attacker deviates
from type I, honeynet learns it on the next iteration. However,
when the attacker is in type II and changes its strategy,
honeynet takes 2 iterations to detect the change in strategy
of attack.
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Fig. 7: Regime change detection delay for type II attacker

Fig. 6 depicts a scenario where the attack strategy is of
type II. It changes its targeted SU transmission characteristics
dynamically. For the first phase, attacker aims characteristics 1
and then 2 and then 3. We can see that for imperfect scanning,
the attack may actually happen on a different lure. Honeynet
identifies the correct strategy and particular type of attack in
15 iterations. We can see that for this particular simulation,
honeynet detect attack strategy change after 3 iteration in the
first case and after 2 iterations in the second one.

When honeynode is placed with the wrong lure, legitimate
communications are disrupted. We see honeynet detects the
regime change very quickly, which decrease the loss. Mainly,
the loss is during the learning phase when CR-Honeynet does
not deploy honeynode. To see how long does it take for the
honeynet to detect the regime change while in type II lure
strategy, we present a comparison to select optimal window
size in fig. 7. An attacker of type-II strategy is attacking a
particular lure with probability ζ. We simulated for 3 different
values of ζ. For every value of ζ and w, the simulation is run
for 100,000 slots to ensure accurate results. In this simulation,
the attacker is changing its targeted transmission characteristics
randomly with mean interval of 100 steps. We can clearly see
that, window size w = 5 provide optimal result i.e. it can
detect regime change very quickly and efficiently.

D. Overall system performance

We now code an Event Driven Simulator to compare the
system performance between using honeynet and not using
honeynet for an infinite buffer CRN. For simplicity, we have
considered 20 SUs and kept ξ = 0.8. We vary average packet
inter-arrival time (λ) to examine system performance with
varying load. We observe that for all values of λ, with CR-
Honeynet the average packet dropping probability is 0.01,
while without honeynet results packet dropping probability
of 0.05 . Fig. 8 provides the comparison of average queuing
delay for a SU. From the figure, we can conclude that, using
honeynet for lower λ is highly beneficial as packet drop is
minimized. Better packet delivery ratio is achieved at the cost
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Fig. 8: Average queuing delay for N = 20, ξ = 0.8

of higher packet delay. In our future work we shall try to get
an estimation of ξ∗ that can regulate CRN to use honeynode or
not, depending λ and traffic type (elastic, non-elastic, real-time
etc.)

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose CR-Honeynet, a CRN sustenance
mechanism, which exploits the fact that an intelligent and
rational attacker aims for certain transmission characteristics
to gain highest impact out of jamming. The stochastic learning
model presented in the paper shows that the honeynet can
confidently learn the attacker’s strategy and dynamically evolve
with attacker’s strategy change. The mechanism efficiently
lures the attacker towards attacking the active decoy trap
and thus bypassing attacks on legitimate SU communications.
Currently, the mechanism has a drawback of not placing active
decoy while it is passively learning attacker’s strategy. In
the future, we shall investigate more to improve the learning
mechanism where the honeynet would be able to predict the
attacker’s strategy change and can place an active decoy to mit-
igate attack. Again this model can be further enhanced while
considering the combination of transmission characteristics as
attacker’s strategy to find the highest impact communication.
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