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Abstract

Cognitive Radio Network (CRN) has to stall its packet transmission periodically
to sense the spectrum for Primary User’s (PU’s) transmission. The limited and
dynamically available spectrum and fixed periodic schedule of transmission in-
terruption makes it harder to model the performance of a CRNs. Again, an
open and dynamic spectrum access model brings forth a serious challenge of
sustenance among the CRN and makes them more susceptible to jamming-
based denial of service (DoS) attacks. Inspired by honeypot in the network
security, we propose a honeynet based defense mechanism called CR-honeynet.
CR-honeynet aims to avoid attacks on legitimate communications by dedicating
a Secondary User (SU) as a honeynode, to deter the attacker from attacking
legitimate SUs and attack the honeynode instead. Dedicating an SU as hon-
eynode, on account of its permanent idleness, is wasteful of an entire node as
a resource. We seek to resolve the dilemma by dynamically selecting the hon-
eynode for each transmission period. The contribution of the current paper is
two-fold. Initially, we develop the first comprehensive queuing model for CRNs,
which pose unique modeling challenges, due to their fixed periodic sensing and
transmission cycles. In the second step, we introduce a series of strategies for
honeynode selection to combat these attacks while keeping the CRN’s perfor-
mance optimal for different traffic scenarios. We build a simulation of a CRN
under jamming attack and analyze its performance with different honeynode
selection strategies. We find that the predictions, of our mathematical model,
track closely with the results of our simulation experiments.
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1. Introduction

The conventional static spectrum allocation policy has resulted in subop-
timal use of spectrum resource, leading to over-utilization in some bands and
under-utilization in others [1]. As a solution, dynamic spectrum access-based
Cognitive Radio (CR) has been proposed. CR allows secondary users (SUs) to
use an idle licensed spectrum while the proprietary primary user (PU) is not
transmitting. The IEEE 802.22 [2] which is an emerging standard for CR-based
wireless regional area networks (WRANs), aims at a vacant licensed TV spec-
trum to be used by SU without causing interference to PU. Infrastructure-based
cognitive radio networks (CRNs) consist of two major components: a central
controller (such as base station or access point) and mobile SUs. The central
controller supervises the communication and makes the spectrum allocation de-
cisions. A sample CRN is presented in Fig. 1.

Figure 1: A sample CRN with an at-
tacker

The dynamic nature of the available spec-
trum makes CRNs vulnerable to several spec-
trum etiquette attacks. The IEEE 802.22
standard does not specifically address the SU-
SU interaction or SU protection, although it
proactively specifies the PU protection. The
“open” philosophy of the CR paradigm makes
such networks susceptible to attacks by smart
malicious users that could even render the le-
gitimate CR spectrum-less [1, 3, 4]. Due to
software reconfigurability, CRs can even be
manipulated to disrupt other CRNs or legacy
wireless networks with even greater impact than traditional hardware radios.
The jamming-based Denial of Service (DoS) [1] attack is achieved by transmit-
ting energy on the channel where a legitimate SU is communicating. An attacker
can scan through channels, identify ongoing legitimate SU communication and
then transmit a jamming signal on that particular channel causing heavy inter-
ference to the SU, which in effect, can block the legitimate SU’s transmission
completely.

A number of defense mechanisms against such attacks have been attempted
[5–10]. Most of these techniques have considered that the attacker is naive
and does not evolve. Inspired by “honeypot” in cybercrime, we propose CR-
honeynet, which passively learns the attacker’s strategy of assault and then
dedicates an SU as an active decoy to lure the attacker to hit the decoy node.
In this way, the assailant gets false satisfaction of attack, while legitimate SUs
bypass attacks. In our earlier paper [11], We introduced the learning mechanism
of CR-Honeynet. However the effectiveness of CR-Honeynet in CRN has to be
studied before a CRN can deploy CR-Honeynet mechanism. The goal of this
paper is to investigate whether allocating resources for CR-honeynet can be
beneficial for improving system performance.

To protect PU incumbent services, DSA strictly enforces SUs to periodically
pause its transmission and sense for PU activity. SUs scan the wireless envi-
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Figure 2: Time domain representation of Cognitive Cycle

ronment for free channels in the sensing period and transmit packets during
transmission period. This cognitive cycle is depicted in Fig. 2. The centralized
controller allocates different channels to each SU. Several practical challenges
need to be co-opted and addressed before allocating resource for honeynet in
CRNs. Although dedicating an SU as honeynode potentially makes the CRN
robust, it is not a “free ride” as it degrades the effective system throughput.
Critical question is how would the honeynode be chosen then? Who will be
responsible (“honeynode” selection) for auxiliary communications and monitor-
ing in honeynode? To answer the above questions, we must first understand
the complexity of the CRN’s traffic behavior under DSA scenario. Consider a
scenario wherein a user is conducting a number of simultaneous transmissions
- for example, videoconferencing, and many more. All these applications gen-
erate packets randomly and independent of other applications. The complex
nature of data traffic makes it difficult to analyze the Quality of Service (QoS).
CRNs, meanwhile, exhibit a unique behavior pattern that remains yet to be
investigated by any mathematical model. For example, the periodic sensing by
SUs forces interruption on transmission, affecting end-to-end QoS by imposing
delay and jitter on packet transmission. Thus, a major goal of this work is to
model a CRN’s service using stochastic analysis and use our model to estimate
baseline performance indicators. Then we propose state dependent honeynode
selection policies for different traffic models to enhance the CRN’s performance.

The rest of the paper proceeds as follows: In Section 2, we discuss the motiva-
tion for our work, i.e., DoS attacks and honeynet limitations. Section 3 presents
a mathematical model to estimate CRN performance using a queue with fixed
periodic server vacation. Section 4 presents several honeynode selection policies.
In section 5, we build a comprehensive simulator to study the performance of
the proposed model, describe a utility model to determine when a honeynet can
be used and when not, measure the fairness of all honeynode selection strategies
and finally present the benefits of an optimal honeynode selection strategy that
provides the best performance with fairness. Finally, section 6 concludes the
paper.

2. Motivation
2.1. Jamming Attack

The threat of penalty can discourage a potential assailant from attacking a
PU; however, when an SU accesses a channel, it borrows the channel, and it does
not have any ground from which it can fend off attackers. While PUs are able to
discourage attackers, SUs are left vulnerable to malicious jamming / disruptive
attacks [12]. Jamming can be broadly categorized into two types [7, 10]. The
first type being physical layer jamming where the attacker jams the channel of
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(a) Normal communication (b) Jamming Signal
Figure 3: PSD for data communication and jamming signal

communication by sending strong noise or a jamming signal and the second type
is datalink / MAC layer jamming, which targets several vulnerabilities present
in the MAC layer protocol.

We run an experiment in our lab, to study the feasibility of jamming attack.
Two computers are configured to communicate over a WLAN (IEEE 802.11-a,
channel 36, central frequency: 5.18 GHz). The Power spectrul Density (PSD)
for normal communication (without jamming), which can be seen in Fig. 3a
is observed through Wi-spy spectrum analyzer [13]. Then we begin transmit-
ting a narrow-band jamming signal of 2MHz from a GNU Radio [14] enabled
USRP radio [15] on the same channel. In the presence of the jamming signal,
the genuine transmission of the WLAN was stopped completely which can be
observed in Fig. 3b. Here, the attacker is exploiting the vulnerability present in
IEEE 802.11 MAC that enforces a node to sense the channel before transmis-
sion. When the legitimate transmitter senses that there is some energy on the
channel, it refrains from transmission. Irrespective of the jamming technique,
a target node suffers significant amount of data or packet loss and sometimes
completely loses the channel. CRN, being a next generation intelligent network,
should incorporate a mechanism to mitigate, avoid, and prevent such attacks.

2.2. Existing Jamming Detection and Prevention Mechanisms

Due to the noise in wireless medium, detection of jamming is challenging
in combat with an attacker. A good survey of different detection mechanisms
for the jamming-based DoS attack has been presented in [16]. It is difficult to
correctly detect jamming, based on a single system parameter. Several system
parameters such as received-signal-strength, packet-send-ratio, packet-delivery-
ratio, carrier-sensing-time, etc., are used to model jamming detection systems.
Consistency checks among system parameters are used for more efficient detec-
tion. Authors of [17] have classified spectrum usage anomaly detection data
fusion algorithms. Through different fusion algorithms, anomalies in spectrum
usage can be detected successfully with higher efficiency. A cross-layer detection
mechanism of anomalous spectrum attack has been proposed in [18], where the
network maps the jammed geographical region, using spectrum-sensing reports
collected from each SUs that are equipped with localization modules.

Existing defense mechanisms can be broadly categorized into Channel Surf-
ing, Spatial Retreat, Mapping Jammed Region, Spread Spectrum, etc. In Channel
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Surfing technique, the node which is under attack, migrates its channel of com-
munication upon detection of jamming [5]. Authors of [6] proposed proactive
frequency hopping, where the nodes change its channel of communication, irre-
spective of attacks to avoid jamming. The authors considered a fixed number
of channels that the attacker can use, that is known to an SU, which in reality
is difficult to achieve. In Spatial Retreat [7], mobile nodes relocate themselves
physically to avoid jamming. The constraint of this approach is that the nodes
are required to be highly mobile, which is not applicable for static nodes. In
Mapping Jammed Region [8] approach, the multi-hop, and intensely populated,
CRN avoids routing through the links that have been affected by jamming. This
mechanism fails if there is only one path and that path is attacked. Majority
of current countermeasures defend against jamming after it has been detected;
on the contrary, CR-Honeynet learns from the history of attack and provide
proactive defense mechanism.

2.3. Use of Honeynet in avoiding attacks

“Honeypot,” in cybercrime, is defined as “a security resource who’s value lies
in being probed, attacked or compromised”. In cybercrime defense, honeypots
are being used as a camouflaging security tool with little or no actual produc-
tion value to lure the attacker into giving them a false sense of satisfaction, thus
bypassing (reducing) the attack impact and giving the defender a chance to re-
trieve valuable information about the attacker and their activities. This node is
called honeynode. A single channel honeypot-based channel surfing, to mitigate
jamming-based DoS attacks, has been proposed in [10]. The network dedicates
a node, as honeypot, to monitor attacks. Upon detection of attack, the network
switches its channel of operation, which results in long-time communication dis-
ruption. Majority of the previous works have assumed that the attacker is naive
and does not evolve. Thus, none of these works have focused on learning the
strategy of attacker where the attacker is also dynamic and changes its strategy
of choosing the target communication characteristics.

From an intelligent and rational attacker’s perspective, jamming a commu-
nication randomly will not yield optimal results; rather, an attacker can be
most disruptive if it targets the communication that impacts the CRN most
severely upon interruption [16, 19–21]. The attacker succeeds in determining
highest impacting communication by observing certain transmission character-
istics, for example, highest transmission power, highest data rate, modulation
scheme, packet inter arrival time, quality of route with end-to-end acknowledg-
ments, etc. [16]. To proactively defend against such intelligent attackers, a CRN
must learn about the strategy that the attacker uses, to figure out the highest
impacting communication. The attacker’s strategy of finding the highest im-
pacting communication can be used as a trap by the defending CRN to detract
the attacker from striking legitimate communications.

We propose CR-honeynet, a honeynet-based defense mechanism where the
CRN passively learns the strategy of the attacker and then places an active
decoy, namely honeynode to entice the attacker for jamming the honeynode
transmission. Thus, the attacker gets a false impression of attacking the highest
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impacting communication, whereas legitimate SU communications avoid attacks
and reduce attack impact on the CRN. The SU, acting as honeynode, refrains
from transmitting its own data packets and instead transmits garbage data with
specific transmission characteristics. Such transmission characteristics lure the
attacker to jam the honeynode’s transmission. For example, if an attacker tar-
gets the highest transmission power, then the honeynode transmits with highest
possible power, while all other SUs keep their transmission power lower than
the honeynode’s power.

The description of the learning mechanism of honeynet is provided in [11].
When CR-honeynet is deployed, and the attacker is evolving, the attacks will
sometimes be trapped by honeynode, and sometimes can strike legitimate SUs.
We define one parameter, attractiveness of honeynet (ξ) as the probability that
the honeynode is the one to be attacked, conditional on observing a jamming
attack. Note that ξ depends on how well the CR-honeynet learning mechanism
works. In this paper, our goal is to investigate the effectiveness of CR-honeynet
with different values of ξ and determine when it is/not beneficial to deploy
CR-honeynet.

2.4. Queue model

Honeynode ensures less data loss at the cost of end-to-end delay. Some ap-
plication can tolerate data loss but not delay and others the opposite. The goal
is to build a mathematical model that can estimate system performance before
we actually deploy CR-honeynet. If honeynode assignment results in degrada-
tion of overall system performance then we can opt for not assigning honeynet.
The end-to-end delay in CR is mainly affected by queuing delay as processing,
transmission and propagation delays are negligible compared to queuing delay.
Our theoretical model focus on determining queuing delay. Then we concentrate
on honeynode selection strategies to achieve better over-all system performance.

We can model an SU as a server with vacation where vacation is special
service with higher priority. There are many mathematical models that deals
with servers with vacations [22–25] where the server has the option to take
vacations only at the end of its current service. Because the sensing period has
deterministic length and intervals, the server model does not conform to the
usual server with vacations. Instead, the sensing period acts as a “priority”
customer whose inter-arrival rates and service times are deterministic. In this
case a packet transmission has to be delayed if this packet can not be transmitted
within the transmission period. In this paper we derive a mathematical model
for server with deterministic vacations that portray the behavior of SUs in CR-
Honeynet.

3. Mathematical Model of an SU
3.1. Queuing Characteristics

In earlier telecommunication networks, voice packets were generated at fixed
rates or at fixed burst sizes [26, 27]. For this kind of system the inter-arrival time
is fixed and the value depends on the codec (voice digitization technique) used
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[26, 27]. Voice activity detection and Silence suppression techniques introduces
randomness in packet arrival time.

Figure 4: Depiction of how packets arrive to
queue

With the increase in usage of mul-
timedia applications on smart-phones
the nature of the traffic flow is very
complex to model. Because of the in-
dependence between sources, a mem-
oryless inter-arrival time may be a
good model. This observation is sup-
ported by statistical analysis. The
studies carried out in various exper-
iments [28–31] have concluded that
when many different applications are
merged, the packet arrival process tends to follow Poisson process. Fig. 4 pro-
vides a depiction of how packets from different applications flow to a queue. We
use λi to denote the rate of the Poisson process of packet arrivals at SU labeled
i, and {Ni(t); t ≥ 0} to denote the corresponding arrival process. When a single
queue is analyzed, we drop the subindex i.

Each SU is modeled as a FCFS (first come-first served) queue with one
server. Packets arrive according to a marked Poisson process with rate λ and
“marks” specifying the packet size in number of bytes. In our model, the marks
{Y1, Y2, . . .} are independent and identically distributed uniform random vari-
ables. The aggregate byte arrival rate is thus λE(Y ). Each SU can transmit at
a fixed data transmission rate. Therefore, the service time of a packet of size
Yn is, Sn = (Yn/data rate) and it has uniform distribution U(`1, `2), with mean
E(S) = (`1 + `2)/2 and maximal service rate, µ = 1/E(S).

During the transmission periods of length Tt, the model corresponds to a
M/G/1 queue [23] where the service time of consecutive packets {Sn} are in-
dependent and identically distributed. During the sensing periods of length Ts
and transmission periods when the SU is chosen as a honeynode our server stops
servicing the queue, which nonetheless continues to accumulate arriving pack-
ets. The effect of an attack during a transmission period when the SU is not a
honeynode is that all packets transmitted in that slot are lost.

The two performance criteria of interest are the (stationary) average waiting
time in queue per packet (Wq), and the average packet drop rate (pdr). In the
case of infinite buffer pdri is also the long term probability that the i-th SU is
attacked, that we call θi.

3.2. Queuing Model with Vacations

For simplicity, we assume that there are more free channels than the number
of SUs in the CRN. In this section we assume that an SU is chosen to be
“sacrificed” as a honeynode at every transmission period. If an SU is chosen as
a honeynode, then all the new arriving packets join the queue and wait until
the next transmission period, where the SU is not chosen as a honeynode. The
analysis of this section assumes a random policy, where the i-th SU is chosen
as honeynode with probability pi, independently of past assignments and of
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the state of the CRN. Other benchmark policies (such as round robin) will be
discussed in later sections and compared via simulation experiments.

The amount of service time that must be postponed at the start of a sensing
period is either 0 (when the server is idle at time of sensing) or it has the value
of the random variable S̃ representing the fraction of service time that must be
postponed. In steady state, if ρ = P(the server is busy) then the server is not
idle with probability ρ. Thus, calling X the fraction of service that must be
postponed, we have:

X =

{
0 w.p. 1− ρ
S̃ w.p. ρ

We now characterize the random variable S̃, Condition on the event that
the sensing period starts when the queue is still not empty. When transmission
starts, consecutive service times S1, S2, . . . accumulate until the last service that
does not fit into transmission. We now provide precise definitions and results.
Let M(t) = min(n : S1 + . . .+Sn ≤ t). This is a renewal process and it indicates
the times of start of successive service epochs. Call

Jn =

n∑
j=1

Sj ,

then for time t = Tt we are interested in what is known as the “age” or “back-
ward recurrence time” of the renewal process M(t) at time t = Tt:

S̃ = Tt − JN(Tt).

For a renewal process with no preemption, the distribution of this variable
and its expectation can be calculated asymptotically [23]. In our model, where
“many” services can be completed during transmission time (specifically, when
`2 << Tt) we can argue that S̃ will have this known asymptotic distribution as
an approximate distribution, so that

P(S̃ ≤ x) =
1

E(S)

∫ x

0

(1− F (u)) du

where F (u) is the distribution corresponding to the uniform random variable S
between `1 and `2.

Lemma 1. Assume that P(S̃ ≤ x) = 1
E(S)

∫ x
0
P(S > u) du. Then

E(S̃) =
E(S2)

2E(S)
; E(S̃2) =

E(S3)

3E(S)
.

Proof. Let g be any differentiable function with bounded derivative. Call
f(·) the density of the service time S. Using calculus it is straightforward to
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calculate:∫ ∞
0

g′(x)P(S > x) dx =

∫ ∞
0

g′(x)

∫ ∞
x

f(y) dy =

∫ ∞
0

dy

(∫ y

0

g′(x) dx

)
f(y)

=

∫ ∞
0

g(y)f(y)− g(0) = E(g(S))− g(0).

Thus, using g(x) = x2/(2E(S)) we obtain the result for E(S̃) and using g(x) =
x3/(3E(S)) we obtain the result for E(S̃3). �

Using this approximation,

E(X) =
ρE(S2)

2E(S)
(1)

For any constant a > 0,

E(a+X2) = ρ(E(a+ S̃)2 + (1− ρ)a2

= ρ(a2 + 2aE(S̃) + E(S̃2)) + (1− ρ)a2

= a2 + 2aE(S̃) + E(S̃2)

which yields:

E(a+X2) = a2 + a
E(S2)

E(S)
+

E(S3)

3E(S)
. (2)

We now calculate the effective utilization factor for the queue under the
random policy. Assuming that the queues are stable, the effective service rate
for each of the SUs satisfies the equation:

µ′i = µ

(
Tt − ρi E(S̃)

Ts + Tt

)
(1− pi), ρi =

λi
µ′i
,

which yields an implicit equation for µ′:

µ′i(Tt + Ts) = µ

(
µTt −

E(S2)λi
2E(S)µ′i

)
(1− pi) (3)

Solving the quadratic equation (3) gives values of µ′i that depend on λi.

Remark: If all SUs have equal probability of being chosen (pi), then the re-
duced service rate is the same as in the round robin policy.

Stationary policies. We now provide an analysis of the stationary queu-
ing delay for the random (or round robin) policies. The analysis is done for each
queue, and the subscript i will be dropped from our notation.
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Figure 5: Path of the residual service of customer currently in service, for an SU. Here, green
indicates packet transmission; red is Channel sensing; yellow is Serving as honeynode and
blue indicates, the SU postpone current packet transmission as it can not be done within
transmission period, cyan indicates postponed packet transmission.

Theorem 1. Suppose that i’th SU has incoming rate λ, and that it is chosen as
a honeynode independently of the state of the queue, with long term frequency of
p. Furthermore, assume that this queue is stable and ergodic and let X satisfy
equations (1) and (2). Then the stationary delay in queue is:

Wq =
R

1− λE(S)(1 + ∆)
, (4)

where the stationary residual service time is:

R =
λE(S2)

2
+

E(Ts +X)2 (1− p) + E(Ts + Tt +X)2 p

2(Ts + Tt)
(5)

and the correction factor for the vacations is:

∆ =
Ts + λE(X) + pTt
(1− p)(Tt − E(X))

.

Proof. We use the residual service approach [22, 23] to calculate the station-
ary average delay in queue (assuming that it is well defined) as follows. Sensing
periods of length Ts and honeynode periods of length Tt correspond to a “vaca-
tion” of the server, and are followed by transmission times of length Tt, during
which consecutive packets with varying sizes enter service. Unlike the usual
analysis of servers with vacations, here a vacation starts at deterministic times,
and not necessarily at the end of busy periods. When not idle, the server can be
in three different states: (a) a packet is being transmitted, (b) the server is on
vacation, or (c) the current transmission is postponed and the server is waiting
for the vacation.

Fig. 5 shows a typical path of the residual time until the completion of the
current task (a service, a vacation, or the wait for the vacation), that we call
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r(t). Under ergodicity, the stationary average residual service is the same as the
long term average, given by:

R = lim
t→∞

1

t

∫ t

0

r(t) dt = lim
t→∞

1

t

M(t)∑
i=1

S2
i

2
+

V (t)∑
i=1

L2
i

2

 (6)

where M(t) is the number of arrivals that have entered service up to time t, V (t)
is the number of sensing periods up to time t, and Li is the length of the i-th
vacation. It follows that Li are independent and identically distributed (iid)
random variables random variables with composite distribution: with probabil-
ity 1− p the vacation length is Ts +X, and with probability p it is Ts +Tt +X.
For k ≥ 1, let

τk = min(t > τk−1 : Q(t) = 0); τ0 ≡ 0

be the consecutive moments when the queue empties. The stability assumption
implies that the queue empties infinitely often (that is, the state Q = 0 is
positive recurrent), so that τk → +∞ with probability one. At these times,
M(τn) = N(τn), and N(t)/t → λ, because N(·) is a Poisson process. Because
the limit R (assuming that it exists) is the same if we consider any divergent
subsequence, we can take the limit along the subsequence {τk; k ≥ 0}. In our
model V (t)/t→ (Ts+Tt)

−1. Under ergodicity, long term averages are stationary
averages, and

E(L2
i ) = E(Ts +X)2(1− p) + E(Ts + Tt +X)2 p,

where X satisfies (1) and (2). Applying these results in (6) gives expression (5).
The rest of the argument is as follows. It is a known property of Poisson

processes that sampling a system at Poisson arrival epochs yields states that
have a stationary distribution. This is sometimes called “ a random snapshot”
of the system. In queuing theory this property is also known as “PASTA”
(Poisson arrivals see time averages). Using this property an arriving customer
will encounter Nq customers in queue, where Nq is a random variable that has
the stationary distribution of the queue length. The average wait time is thus
the sum of the expected service time of the Nq customers in queue, plus R, plus
the contribution of the vacation periods during the waiting time. Call T the
required service time for the customers in queue, then using Little’s Law:

E(T ) = E

 Nq∑
k=1

Sk

 = E(NqE(S)) = λWqE(S).

Therefore, the stationary delay upon arrival at the queue will satisfy:

Wq = λWqE(S) +R+ vs(Ts + E(X)) + vh Tt, (7)

where vs and vh are the (expected) number of sensing and honeynode periods
(respectively) that fall within the time required to transmit all the Nq customers
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in front of the new arrival. In the expression above we have used the fact that
for every sensing period, the actual vacation time is not just Ts but we must add
the lost time from the postponed service (if any). On average, the stationary
contribution of this excess is E(X).

We now proceed to the calculation of vs and vh. In order to do so, we will
use Wald’s theorem [23]. Given T , the actual number of (true) transmission
periods required to provide the service for the Nq customers in queue is:

νt = min

(
n :

n∑
i=1

(Tt −Xi) ≥ T

)
, (8)

where Xi is the fraction of postponed service at the i-th sensing period. This is
a stopping time adapted to the filtration Fn generated by {Zi ≡ Tt−Xi, i ≤ n}.
In addition, Zn is independent of Fn−1. For our model the random variables
{Zn} are bounded, thus absolutely integrable. It is straightforward to verify
that E(Xn1{νt<n}) = P(νt < n)E(X), and finally, E(νt) < ∞, which follows
because νt ≤ T/(Tt−`2) w.p.1. Under these conditions, Wald’s Theorem ensures
that

E

(
νt∑
i=1

Zi

)
= E(νt)(Tt − E(X)).

Rewrite (8) as:
∑νt
i=1 Zi ≤ T <

∑νt+1
i=1 Zi and take expectations to get:

E(T )

Tt − E(X)
− 1 < E(νt) ≤

E(T )

Tt − E(X)
.

In stationary state, we use the approximation E(νt) = λWqE(S)/(Tt−E(X)). In
order to calculate vs and vh we reason as follows: given the number of honeyn-
ode periods, the number of sensing periods is the number of true transmission
periods required to exhaust the time T , plus vh, that is:

vs = E(νt) + vh = E(νt) + pvs, =⇒ vs =
E(νt)

1− p
.

Replacing now these values in (7) and using E(T ) = λWqE(S), we obtain

Wq = λWq E(S)

(
1 +

Ts + E(X)

(1− p)(Tt − E(X))
+ p

Tt
(1− p)(Tt − E(X))

)
+R,

which yields (4), after some simple algebra.

4. Honeynode Selection Policies

4.1. State Dependent Policies for Uniform traffic distribution

When an SU is chosen as honeynode with initial queue size of Q packets,
the queue size at the beginning of the following transmission period is Q + A,
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where A ∼ Poisson(λ(Ts+Tt)). In order to understand the effects of honeynode
assignment, we now look at the dynamics of a single channel with an initial
queue of a given size. Consider a queue with initial service requirement (in

milliseconds): u =
∑Q
i=1 Si, where {Si; i ≥ 0} are iid∼ U(`1, `2). The remaining

service time at time t seen by the server is a stochastic process that follows the
dynamics:

K(t) = u+

N(t)∑
i=1

Si − t, t ≤ τu,

where N(t) is the Poisson arrival process of packets, with rate λ and τu =
min(t ≤ Tt : K(t) ≤ 0) is the time until the queue empties, or until the service
stops because a sensing period starts.

This is called the “storage process” and it is dual to the surplus process
in the canonical model for risk theory [32]. We are interested in evaluating
the probability that the queue empties within the current transmission period,
that is, P(τu ≤ Tt). This quantity is known in classical risk theory as the
finite horizon “ruin probability”. Because there are no closed form solutions, a
number of methods have been proposed in the literature to evaluate the ruin
probability, mostly when Tt =∞.

In our problem, the packets have an integer number of bytes. If we consider
IEEE802.11g channel with data transmission rate of 36 Mbits/sec, the natural
time to transmit a single byte, δ = O(10−7 ms). We consider u = jδ for j ∈ N.
To discretize the arrival process for small δ, we approximate the Poisson process
with an independent Bernoulli trials process with P(N(δ) = 1) = 1− P(N(δ) =
0) = 1− e−λδ. Define the function:

φN (j) = P(τjδ ≤ Nδ). (9)

which defines the probability that the queue will empties within the next trans-
mission period. Then we are interested in solving (9) for N = bTt/δc, j = bu/δc.
First notice that if j ≥ N then φN (j) = 0, because it takes longer to serve
the current packets than the prescribed time horizon. Next, suppose that
j < N . Conditioning on the event that the first packet arrives during the
interval [(k − 1)δ, kδ), it is immediate that φN (j) = 1 for all k > j (no arrivals
while there is transmission, so the queue empties) which happens w.p. e−λjδ.
For k ≥ j the new arrival has Y bytes, and k bytes have been transmitted. The
function φ satisfies the recursive equations:

φN (j) = e−λjδ + (1− e−λδ)
j∑

k=1

E(φN−k(j − k + Y )) e−λkδ,

for Y ∼ U(126, 2146) is the packet size in bytes. The boundary conditions are:

φN (0) = 1 ∀N,
φ0(j) = 0 ∀ j,
φN (j) = 0 ∀ j ≥ N.
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In principle, the above equations can be pre-calculated starting at N = 1
and increasing N , similar to a two-dimensional dynamic programming problem.

At the end of a sensing period, the central controller of the CRN can then
evaluate, for every channel i = 1, . . . , n, the probability that it empties if it
chosen as a honeynode, using

πi = P(emptying during period) = e−λi

∞∑
a=0

Φi(ui + a)
λai
a!
,

where Φi(x) = φbTt/δc(bx/δc) for SUi.
Notice that if θi is the probability that SU i is attacked and pi is the long

term fraction of periods where SU i is chosen as a honeynode, then pdri =
θi((1 − pi) + pi(1 − ξi)). In particular, if all channels are equally likely to be
attacked then θi = 1/n, and if pi = 1/n, then

pdri =
1

n

(
1− ξ

n

)
. (10)

This is verified in section 5.3.
Therefore, strategies for honeynode selection may include choosing the SU

that has the largest probability of emptying its queue. For a CRN where all
SU’s have identical traffic (same arrival rates), choosing the SU with highest
probability of emptying the queue is equivalent to choosing the SU with lowest
queue size. Using, largest probability of emptying queue strategy, the CRN with
uniform traffic chooses an SU that has the lowest queue at the beginning of
a transmission period. For comprehensiveness, we compare this policy with
round robin and random honeynode selection. In random honeynode selection
strategy, one SU is chosen randomly to serve as a honeynode. In round-robin
honeynode selection strategy, each SU takes a turn to serve as a honeynode
in a cyclic order. In section 5.3, we present the system performance of these
honeynode selection strategies and also compare the performance of CRN when
it does not use a honeynet.

4.2. Optimal honeynode selection strategy for non uniform traffic distribution

So far we have considered uniform traffic load among all SUs in a CRN.
In this case, state dependent policy of choosing SU with lowest queue size is
beneficial in terms of overall system performance as can be seen in section 5.3.
However, choosing SU with lowest queue size provides lowest fairness in the
case of non-uniform traffic (i.e. SUs with different data rate requirements). It
may easily be possible that the SU with lowest traffic is starved of services.
This particular SU would be chosen as honeynode most of the time due to
lower accumulated packets in the queue compared to other SUs. Repeatedly
dedicating one SU over the other SUs results in more queuing delay for this SU.
Round robin strategy provides fairness of service but lacks in overall system
performance. Section 5.6 presents this trade-off.

Queuing delay and PDR define Quality of Service (QoS) measure of different
applications. Some applications (such as real time application) can tolerate
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packet loss but not delay and some applications (such as FTP) can tolerate delay
but can not tolerate packet loss. A utility function has to be defined considering
the delay and PDR so that CR-Honeynet can determine the best candidate for
Honeynode. Utility function varies with the application. In section 5.5, we have
used R-score as utility function for voice application. We have already stated
that packet arrival model is a marked Poisson process where the marks specify
the packet size. We can calculate transmission or service time (Si) for each
packet in the queue at the beginning of transmission period. Let’s say Ui is the
utility function of SUi that depends on queuing delay and the pdr. Uavgi is
the average of Ui observed till the last transmission period. Now we model the
honeynode selection strategy to a maximization problem.

maximize :
∑
i∈N

(Ui(d
exp
i ,pdri))

2
∑
i∈N

ψ(i).Uavgi (11)

subject to : ∃! i ∈ N (ψ(i) = 1)

dexpi =

(∑Q(i)
j=1 Sj+Ts+Tt.ψ(i)

)2

2Ts+Tt

1− λiEi(S)(1 + ∆i)
,

∆i =
Ts + λiE(X)

(Tt − E(X))
.

Where ψ(i) is a indicator function: ψ(i) = 1 if SUi is chosen as honeynode
for the next transmission cycle and ψ(i) = 0 if it serve as normal SU. Qi is the
number of queued packets in SUi. Ei(S) is the expected packet transmission
time. pdr is measured from past events.

Determining the SU to select is very easy to calculate from the above men-
tioned maximization problem. We consider all SUs as possible candidates for
honeynode and plug ψ(i) = 1 separately. After calculating the utility we choose
the SU that calculates highest according to (11).

5. Simulation and Results
In this section, we first describe our baseline simulation model. After that, we

inspect the accuracy of the mathematical model with simulated results. Then,
we present the performance of CRN with limited buffer. We build a model
that determines when CR-Honeynet should or should not be used. We examine
the fairness of honeynode selection strategies with a fairness index and finally,
present an optimal honeynode selection strategy that provides better perfor-
mance with higher fairness.

5.1. Simulation parameters and model

We coded a discrete event simulation [33], written in Python. in order to
analyze CR-honeynet’s performance. All arrival rates (λ) are in millisecond do-
main and mean λ packets per millisecond. As a first step, we consider equal
arrival rates λi = λ amongst the SUs. Under this assumption, the random-
ized and the queue-dependent policies become a randomized policy with equal
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Table 1: Simulation Parameters

Parameter Symbol Value
Number of SU N 20
Packet Service Time Sn ∼ U(0.1, 1.7) ms
Sensing Period Ts 50 ms
Transmission Period Tt 950 ms
Number of attacks / slot 1
Number of honeynodes /slot 20
Number of replication 30
Simulated time 5000000 ms
Warm-up time 100000 ms

probabilities, and a minimum queue-size policy, respectively. The data for our
model is given in Table 1.

In all our simulations, we use the technique of antithetic random variables
(ARN) for increased precision. For the infinite queue model, where waiting
and loss are monotone functions of the inter-arrival and service variables, ARN
ensures variance reduction [33] (we used the inverse function method for gen-
erating random variables). For the finite buffer model, because some packets
may be lost, it is no longer true that larger inter-arrivals (service times) always
have a decreasing (increasing) effect on the delay. Although the theory does
not ensure variance reduction for the finite buffer model, we verified this by
experimentation.

Using a simulated time of 50, 000 time slots entails that the number of pack-
ets served in each SU is also a random variable. For each replication of the
simulation, we discarded the “warm up” data corresponding to the first 100
time slots. Preliminary simulations were used to choose these numbers, test-
ing for stationarity and a satisfactory precision. For each replication or run of
50, 000 slots we estimated the quantity (1/N)

∑n
i Wq(i) that we call the average

wait time in the queues. We then used 30 independent replications to calculate
95% confidence intervals of the form:

W̄q ± t29,0.975

√
̂Var(Wq)

30
,

where ̂Var(Wq) is the sample variance from the 30 replications. In the plots that
follow we do not report these intervals. In a typical simulation with λ = 0.9 and
no honeynode the estimated average wait was 9.849± 0.097, which corresponds
to a relative error of 1%.

5.2. Comparison of approximations

Using parameters in Table 1, µ′ can be calculated as in (3). When λ ∈
[0.1, 0.9] and no honeynodes are assigned (pi = 0) we get the range of values
µ′ ∈ [1.05513, 1.05551]. For random honeynode assignment (pi = 1/N), the
corresponding range is µ′ ∈ [1.00283, 1.00320], ensuring stability for all queues.
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Figure 6: Average Queuing Delay for simple cognitive radio network

The analytical formulas available hold for the infinite buffer model and are as
follows.

M/G/1 Queue. To obtain an expression for the stationary average delay
or waiting time in the queue, we calculate a first crude approximation using the
M/G/1 formulas with the effective rates λ and µ′ [23].

Priority model. A second approximation is based on a M/G/1 priority
queue [23]. The sensing operation is to be served with higher priority, whereas
packet transmission is a low priority job. Formula (12) estimates the stationary
average queuing delay for a packet with service priority i, when all customer
classes arrive according to independent Poisson processes.

W i
q =

λ1E[S2
1 ] + · · ·+ λnE[S2

n]

2
∏i
j=i−1(1− λ1E[S1]− · · · − λjE[Sj])

(12)

This formula is only an approximation because the arrival rate of the “sensing”
or high priority jobs is λ1 = (Ts + Tt)

−1, and S1 = Ts is deterministic. Second
high priority job is serving as honeynode where λ2 = p(Ts +Tt)

−1 and S2 = Tt,
while S3 ∼ U(0.1, 1.7) is the original packet service time distribution.

Vacation model. This corresponds to our formula (4). When no honeyn-
odes are assigned, we use pi = 0. For the random honeynode assignment we use
pi = 1/20.

We have simulated two scenarios. In the first scenario we assume there is no
attacker, hence the CRN does not use honeynet. In the second scenario there is
an attacker and the CRN dedicates an SU as honeynode in each transmission
period. Fig. 6a and Fig. 6b show the results. We can clearly see that average
queuing delay is higher for the second case as each SU serves as honeynode at
its own slot and delay the packets. This degradation of performance is balanced
by achieving lower packet drop while using CR-Honeynet to defend against
jamming attack. We have presented these results as benchmark, only to compare
the accuracy of our simulation model to other established queue model. The
discrepancies are not very visible for smaller values of λ but they become more
apparent for heavier traffic regimes, where our vacation formula seems to agree
best with the simulated system.
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Figure 7: Results for CRN with infinite buffer

5.3. Comparison of honeynode assignment strategies for CRN with infinite buffer

In this section, we have used FTP data transfer where all SUs with uniform
load. Fig. 7a shows the average wait per packet as λ increases with fixed ξ = 0.8
and infinite buffer sizes. In infinite buffer systems there is no packet drop for
queue overflow, and therefore pdr is independent of λ. The only cause of packet
drop is the jamming attack. Simulation results reflect that with ξ = 0.8, having
no honeynode gives pdr of 0.05 and with one honeynode, pdr is 0.01 for all
values of λ.

For the infinite buffer model, if θi is the probability that i’th SU is attacked
and pi is the long term fraction of periods where SUi is chosen as a honeynode
(assuming stationarity), then pdri = θi((1 − pi) + pi(1 − ξi)). When θi =
pi = 1/N and N = 20 we obtain the linear function 0.05(1 − 0.05ξ) as verified
in Fig. 7b. The attractiveness (ξ) does not affect the queue size, which is
only dependent on the strategy and the incoming rate λ. Simulation result
shows average queuing delay for no honeynode, random , minimum queue and
round-robin selection strategies are 3.54 ms, 72.55 ms, 62.1ms and 64.62 ms
respectively for all values of ξ. These results clearly say that state dependent
policy i.e. selecting honeynode based on minimum queue length is performing
better compared with others strategy. Honeynet ensures less packet drop at the
cost of increased queuing delay.

5.4. Performance of CRN with finite buffer and uniform traffic

When the queues have limited buffer capacity, incoming packets that can’t
fit in the buffer are dropped (lost). Even in the absence of attacks pdri 6= 0. In
the absence of analytical models, we use simulations to assess the performance
of various honeynode assignment strategies. Fig. 8a and Fig. 8b show the results
for the average wait and pdr respectively, as a function of the buffer size, when
λ = 0.6 and ξ = 0.8 are fixed. On average λ×(2Ts+Tt) = 630 packets would be
queued when SU serves as honeynode. There would be queue overflow if buffer
is smaller, then SUs have significant PDR due to overflow. For larger buffer,
performance is similar to that of an infinite buffer.
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Figure 9: Results for CRN varying λ with ξ = 0.8 and Buffer of 400 packets

We run another set of simulations with buffer size as 400 packets for ev-
ery SU. Fig. 9a and Fig. 9b show the observed average queuing delay and pdr
respectively. With low arrival rate λ (below a threshold) honeynode selection
strategy based on minimum queue is performing better. This threshold value of
λ should be Buffer Size/(2TS +Tt) = 0.381 because one SU can accumulate this
amount of packets when serving as honeynode. When λ goes above the thresh-
old, and when the SU is serving as honeynode, it accumulates many packets so
that the queue overflows which causes increase in pdr. Below this threshold SUs
behave similar to infinite buffer model. These two graphs show a good trade-off
between Delay and pdr. With limited buffer and from the two figures it is clear
that the system administrator have to come to a conclusion at particular value
of λ and ξ and specified buffer size, whether to apply a honeynet or not. At
higher value of λ and loss tolerant traffic (such as real time video) not having
honeynode as it can not tolerate delay.

5.5. When Honeynet can be applied and when not

We have seen that the choice of dedicating SUs as honeynode comes with
a trade-off. We need to analyze when CR-Honeynet is beneficial to use or
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not. During each transmission period, the CRN assigns an SU as a honeynode.
This decreases overall pdr while introducing extra delay to packet transmis-
sion. From (10), we can see that, for the case of uniform traffic (i.e. all SUs
handle equal traffic load), pdr is inversely proportional to the attractiveness of
honeynet (ξ). Again, an increase in pdr causes a degradation in the QoS of the
system. In this section, we want to determine the threshold, the lowest value of
attractiveness for effective honeynet (ξ∗). ξ∗ is the point at which the net gain
of using honeynet is zero. A CRN achieves a higher performance by assigning
honeynode when ξ > ξ∗. A honeynet, with effective attractiveness below ξ∗,
is not worth of dedicating one SU to serve as honeynode. To determine this
threshold, we need to define a performance function of the CRN that takes into
account both delay and pdr. Non real time traffic, such as FTP can tolerate
delay provided all packets are received successfully. A honeynode with ξ > 0 is
always beneficial for non real-time traffic because it guarantees lower pdr, com-
pared to not having a honeynode. So, we try to find out ξ∗ for real time traffic
that has a stringent end-to-end packet delay requirement. Higher end-to-end
delays degrade the system performance significantly and a packet is considered
lost if the end-to-end delay exceeds a certain threshold.

As the first step in analyzing real time traffic, we consider Voice over IP
(VoIP) traffic to determine ξ∗. For VoIP services, there are two indicators that
define QoS, namely mean opinion score (mos) and R-score [34, 35]. Both of
these indicators depend on end-to-end delay and packet loss. The end-to-end
delay or mouth-to-ear delay of voice application is, in turn, composed of three
parts, the codec delay (dcodec), the playout delay (dplayout), and the network
delay (dnetwork). Codec delay and playout delay are dependent on the codec
being used and the receiver side buffer respectively. These delays are usually
very small (generally between 10 and 50 ms). The network delay is the com-
ponent that varies with network conditions. Again, the network delay consists
of queuing delay (dqueue) and transmission delay (dtransmission). Transmission
delay, or the time taken to transmit on packet, is very negligible (0.1 to 1.7 ms).
The sensing period, as well as dedicating an SU as a honeynode, introduces
a very high queuing delay to the packet transmission. Considering all these
factors, end-to-end delay can be written as:

d = dcodec + dplayout + dnetwork + dqueue + dtransmission

Packet loss can happen due to packet drops during transmission and while
discarding a packet at the receiver end due to adaptive playout. Packet drop
during transmission is the same as the pdr while playout packet loss probability
(eplayout) has to be measured at the receiver end. Total loss probability can be
written as :

e = pdr + (1− pdr)eplayout

Sengupta et al. have defined MOS and R-Score as follows:

mos = 1 + 0.035R+ 7× 10−6R(R− 60)(100−R) (13)

R = 94.2− (γ1 + γ2 ln(1 + γ3e))− (0.024d+ 0.11(d− 177.3)H(d− 177.3) (14)
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Table 2: Coefficient parameters for calculating loss impairment [34–38]

Codec Bandwidth
(kbps)

γ1 γ2 γ3 Packatization
Delay(ms)

Frames/pkt

G.711 64.0 0 30.00 15 1.0 1
G.723.1.B 5.3 19 37.40 5 67.5 1
G.723.1.B 6.3 15 36.59 6 67.5 1
G.729 8.0 10 25.05 13 25.0 1
G.729A+VAD 8.0 11 40.00 10 25.0 2

Where, H(x) is an indicator function. H(x) = 0 if x < 0 and 1 otherwise.
γ1, γ2 and γ3 are Loss Impairment Parameters that depend on specific codecs
that are used for digitization and packetization of voice samples. Coefficient
parameters for useful codecs are provided in Table 2, which provide the appli-
cation layer data rate. Every packet that passes through MAC layer has to
contain the transmission layer, network layer, and MAC layer headers.

Cole et al. [35] have provided a table that signifies the QoS with mos values
which indicates, the higher mos value, the better the QoS. Again, when mos
is plotted against R-score, it reveals that a system obtains better QoS when
R-score is higher. R-score of 80 and above is desired whereas 70 and higher is
acceptable. We are taking R-score as the CRN’s performance measure and the
goal is to maximize the average R-score.
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Figure 10: Average R-score of the CRN

Now, we build another simulation
of CRN where all SUs, with infinite
buffer, are transferring packets in ac-
cordance with G.711 codec [34], for
voice digitization. Here, we are con-
sidering the minimum queue honeyn-
ode selection strategy. Fig. 10 plots
the average R score for the CRN.
From (4), we see that the queuing de-
lay is irrespective of ξ, where as (10)
reveals that pdr is inversely propor-
tional to ξ. When all other param-
eters are unchanged, R-score is pro-
portional to ξ. In other words, an in-
crease in ξ enhances the QoS, which
can be seen in the figure. We say, ξ∗ is the attractiveness of honeynet for which,
Rwith honeynode = Rwithout honeynode. When ξ > ξ∗, the CRN dedicates one SU
as a honeynode. When using no honeynode, we observe a R-score of 73.11. We
can clearly see here that, for ξ = 0.44, the R-score of using honeynet is same
as of not using honeynet. For this particular CRN, we can conclude that the
lowest effective attractiveness of honeynet (ξ∗) = 0.44.

5.6. Fairness of performance for non uniform real time traffic

We consider Jain Fairness index [39] to measure how fair our honeynode
selection strategies are. For a network of n nodes, if observed values of a perfor-
mance parameter are x1, x2, . . . xn for n nodes, then fairness index is defined as
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Figure 11: Simulation results for CRN with non uniform traffic.

(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

. Fig. 11a and Fig. 11b depicts the overall average queuing delay for

the CRN and fairness index of queuing delay, respectively. All the SUs choose a
λ randomly from the range given in the X-axis. For example, in the third sim-
ulation, all SUs have λ in between 0.6 and 0.8. The first three simulation sets
have lower variances of λ among SUs. The last set of simulations have higher
variances of λ. Here we consider FTP data transfer as the application. We
can clearly see that the minimum queue honeynode selection strategy provides
a lower queuing delay, compared to other honeynode selection strategies. How-
ever, the minimum queue honeynode selection strategy performs very poorly,
in terms of fairness. Actually, some SUs get better transmission by making the
SUs that have lower λ to starve of packet transmission.

5.7. Performance of CRN for real time non-uniform traffic

In this section we study how the CRN can achieve fairness for all SU’s utility.
We have already stated that utility or system performance for real-time traffic is
dependent only on pdr as it is not stringent to delay. Eq.10 shows that pdr only
depends on ξ. Now, ξ depends on the efficiency of the learning mechanism used
in the honeynet. Selection of honeynode does not have any effect on ξ or pdr.
So, for real-time traffic selecting honeynode with minimum queue strategy is
optimal as it achieves the lowest average queuing delay and thus highest utility.

As a first step towards analyzing CRN with non-uniform traffic, We con-
sider VoIP traffic to study the performance of real-time-traffic. We run sets of
simulation where all SUs in the CRN transmit VoIP data in accordance with
different voice codecs chosen randomly from the Table 3. For simplicity in the
simulation we have excluded the codecs with active voice detection and silence
suppression. All codecs demand different throughput and have different packet
arrival rates.

We have proposed a optimal honeynode selection algorithm in section 4.2.
For VoIP traffic we consider R-Score as the performance measure or utility
function in (11). It is interesting to know that all codecs result in different
R-score for same pdr and delays. Fig. 12a shows the average R-score observed
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Figure 12: Comparison of performance for all honeynode selection strategies

Table 3: VoIP packet characteristics [40]

Codec Voice
Payload

Packets Per
Second

MAC Bandwidth

G.711 (64 Kbps) 160 bytes 50 87.2 Kbps
G.723.1 (5.3 Kbps) 20 bytes 33.33 20.8 Kbps
G.723.1 (6.3 Kbps) 24 bytes 33.3 21.9 Kbps
G.729 (8 Kbps) 20 bytes 50 31.2 Kbps

for the CRN which reveals that our proposed optimal strategy is performing
better compared to other honeynode selection strategies. Here we can see that
CRN without honeynode results in R-Score of 73.13. We observe that the
lowest effective attractiveness (ξ) are 0.283, 0.53, 0.71 for optimal selection,
minimum queue selection and round robin selection respectively. Fig. 12b plots
the fairness index for honeynode selection strategies. We can see that minimum
queue selection strategy performs very poorly while the optimal selection and
round robin are pretty fair. Round robin obtains lower fairness index in this
simulation as different codecs provide different R-Score even if the SUs achieve
same queuing delay. So, we can conclude that the optimal honeynode selection
strategy is performing well for real-time VoIP traffic.

6. Conclusions and future work
In this paper we have presented a theoretical model to predict the perfor-

mance of CRN based on queuing model with fixed vacation. The model deals
with the periodic sensing of cognitive cycle as fixed periodic vacation. We show
that CR-honeynet is effective to prevent jamming attack; however assigning
honeynode without considering queuing delay associated with it causes perfor-
mance degradation. Under such circumstances we have shown that dynamic
assignment of honeynode is crucial from the system’s performance perspective.
We propose state dependent honeynode selection strategies at the beginning of
every transmission cycle where the honeynode selection can be done by choosing
the SU that has highest probability of emptying the queue. We have demon-
strated that this strategy performs well when all the SUs in the CRN are having
identical traffic load. We have also analyzed the fairness of performance when
SUs have nonuniform traffic demand. Simulation results reveal that for real-
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time traffic our proposed honeynode selection strategy provides optimal system
performance while maintaining fairness.

7. Appendix

Table 4: Useful notations used in the paper

Notations Meaning
Ts sensing period
Tt transmission period
λ rate of the Poisson process of packet arrivals
Y uniform random variable of packet size
S uniform random variable of packet transmission time
l1 lower bound of packet size
l2 higher bound of packet size
X fraction of service postponed due to sensing interval
ρ probability that SU is busy for sensing or honeynode duty
µ packet transmission rate during transmission period
µ′′ packet transmission rate considering vacation intervals
Wq stationary average queuing delay
∆ correction factor for vacation
R stationary residual service time
pdr packet drop rate
θi long term probability that SUi is attacked
pi long term probability that SUi is chosen as honeynode
vs expected number of sensing period before queue empties
vh expected number of honeynode duties before queue empties
N total number of SUs in the CRN
di delay experienced by SUi
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