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Abstract—Different from the conventional transmit-then-
compute scheme, which has been widely considered in mobile
edge computing (MEC) networks, we propose a transmit-while-
compute scheme to reduce the average latency. Specifically, by
means of the partial offloading technique, the computational
task is divided into multiple subtasks which are sequentially
offloaded to the edge server node (ESN) with short-packet
communications. Therefore, the transmission and computation
of the task can be executed almost simultaneously. Moreover,
to minimize the average latency, we first prove the optimization
of corresponding tasks is quasi-convex, then provide an optimal
solution to determine the blocklength and the size of subtasks.
A low-complexity solution based on the alternating optimization
(AO) method is proposed as well. Numerical results show that
the average latency of the proposed scheme is very close to the
computing time of the task.

Index Terms—Mobile edge computing (MEC), short-packet
communications.

I. INTRODUCTION

Mobile edge computing (MEC) enables low-cost mobile
devices to implement high-performance applications through
offloading computational tasks to the edge server nodes
(ESNs) [1]. To support real-time intelligent applications in
ESN-enabled Internet of Things (IoT) networks, such as
tactile Internet and virtual reality, the execution latency of
the task is required to be extremely low [1], [2]. To address
this issue, short-packet communication is considered, which
utilizes finite-blocklength coding and reduces the transmission
time of the task to milliseconds or less [3]–[5].

To exploit the benefit of short-packet communication for the
MEC network, plenty of works have devoted to the design of
offloading strategy [6]–[8]. Specifically, She et al. considered
the task queuing delay and optimized the computational re-
source to minimize the packet error rate (PER) in [6]. In [7], Li
et al. analyzed the average age of information in short-packet
MEC networks, and jointly optimized the task offloading
ratio and blocklength. In [8], Zhu et al. proposed to leverage
retransmission in ultra-reliable scenarios and improved the
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energy efficiency by adjusting the blocklength. However, these
works are based on the conventional transmit-then-compute
scheme, and the average latency of the system comprises the
transmission and computation time, respectively.

In this paper, we develop a transmit-while-compute scheme
for short-packet MEC networks to reduce the average latency.
Specifically, the mobile user splits the computational task
into multiple subtasks and sequentially offloads the subtasks
to the ESN with short-packet communications. Moreover,
the average latency minimization problem is solved by the
proposed optimal solution and low-complexity alternating op-
timization (AO) based solution. Numerical results demonstrate
the outperformance of the proposed mechanism compared
with the benchmark conventional mechanism. In addition, the
average latency of the proposed scheme is shown to be close
to the computing time of the task.

II. SYSTEM MODEL

In this paper, we investigate a short-packet MEC network,
where a mobile device implements an application task with
the total workload of Ntol bits, while the task is offloaded
to the ESN due to the limited computational capability at
the mobile device. Based on the data-partition model and
partial offloading technique in [1], we propose a transmit-
while-compute scheme and lower the average latency of the
system. The detailed procedure is illustrated as follows.

A. Communication and computation model

Utilizing the partial offloading technique [1], the computa-
tional task is equally divided into K ∈ N subtasks with a
workload of N = Ntol/K bits, where N denotes the set of
all natural numbers. The subtasks are sequentially offloaded to
the ESN with short-packet communication, where each packet
contains m channel uses. For each channel use, the time dura-
tion is t = 1/W seconds, where W is the allocated bandwidth.
As the decoding error occurs in short-packet communications,
retransmission is employed to guarantee the reliability of
communications. Hence, given maximal transmit power PS ,
channel gain |h|2, noise power σ2, and received signal-to-noise
ratio (SNR) γ = PS |h|2/σ2, the average transmission time for
each subtask is

TS(K,m) =
mt

ϵ̄
, (1)
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where ϵ̄ = 1− ϵ, and ϵ = Q(d(K,m)) is the PER; Q(x) =
1

2π

∫ ∞

x

e−t2/2dt is the Gaussian Q function, and

d(K,m) = (Cm1/2 −NtolK
−1m−1/2)V −1, (2)

C = log2(1 + γ), V = log2 e(1− (1 + γ)−2)1/2. (3)
When the transmission of a subtask is completed, the ESN can
start to compute the subtask. We assume η central processing
unit (CPU) cycles are consumed for each bit of workload, and
the computing capability at ESN is f CPU cycles per second.
As such, the computing time of each subtask is

TE(K) =
Ntolη

Kf
. (4)

B. Transmit-while-compute scheme

To further exploit the benefit of partial offloading, we pro-
pose a transmit-while-compute scheme, i.e., the computation
of a subtask and the transmission of sequent subtasks can be
executed concurrently, which significantly reduces the average
latency of the system. Moreover, we analyze the average
latency of the system by comparing the values of mt and
TE(K) in the following two cases.

Case 1: When mt ≥ TE(K), the transmission of kth
subtask and computing of (k− 1)th subtask can be conducted
simultaneously. Therefore, the latency is contributed by the
transmission of all subtasks and the computing of the last
subtask. Hence the average latency of the system T̄ (K,m)
can be expressed as

T̄ (K,m) = T̄1(K,m)

= KTS(K,m) + TE(K) =
Kmt

ϵ̄
+
Ntolη

Kf
. (5)

Case 2: When mt < TE(K), the accurate expression of the
average latency of the system, i.e., T̄ (K,m), is difficult to
determine. However, we know that after the computing of the
kth subtask, for k > 1, the maximal average accumulated
latency for the kth subtask is TS+TE(K)−mt seconds, which
relates to the scenario that the computing time of subtask is
always less than the transmission time. This could happen
when the PER is large. Therefore, we can derive

T̄ (K,m) ≤ T̄2(K,m)

= TS(K) + (K − 1)(TS + TE(K)−mt) + TE(K)

=
Kmt

ϵ̄
+
Ntolη

f
− (K − 1)mt. (6)

where T̄2(K,m) is the upper bound of the average latency
of the system. Moreover, it is clear to see that T̄1(K,m) >
T̄2(K,m) holds with mt > TE(K), and T̄1(K,m) <
T̄2(K,m) holds with mt < TE(K). Hence, we provide a tight
upper bound for the average latency of the system as follows

T̄ (K,m) ≤ T̄U (K,m) = max
(
T̄1(K,m), T̄2(K,m)

)
, (7)

for m ∈ N , where the equality sign holds when K = 1 or
mt ≥ TE(K).

C. Transmit-then-compute scheme

As illustrated in the conventional transmit-then-compute
scheme [8], the ESN starts to compute the task after offloading
of the whole task. We see that the average latency in (5) with
K = 1 corresponds to the conventional scheme.

III. PROBLEM FORMULATION AND SOLUTIONS

We aim to minimize the upper bound of average latency of
the system T̄U (K,m) by choosing proper values of m and K,
while the optimization problem can be formulated as

min
m,K

T̄U (K,m) (8a)

s.t. Q(d(K,m)) ≤ ϵmax, (8b)
K ≤ Kmax, (8c)
m,K ∈ N , (8d)

where ϵmax < 0.5 is the maximum PER to ensure the
transmission efficiency. In the following, we devise an optimal
solution and an AO-based solution to Problem (8).

A. Proposed optimal solution
In this subsection, we propose an optimal solution to

Problem (8) based on the one-dimension search and bisection
search. By the one-dimension search of K, we can find the
optimal m by solving problem

min
m

T̄U (K,m) s.t. (8b), (8d), (9)

where (8b) is equivalent to m > m̄, and m̄ is an unique point
that makes equality sign in (8b) valid [4]. To solve Problem
(9), we provide the following lemmas.

Lemma 1: T̄1(K,m) is a quasi-convex function with respect
to (w.r.t.) m for m ≥ m̄, and there is only one unique
minimum of T̄1(K,m).

Proof 1: See Appendix A.
Lemma 2: T̄2(K,m) is a quasi-convex function w.r.t. m for

m ≥ m̄ and the minimum of T̄2(K,m) is unique.
Proof 2: See Appendix B.
Recalling (7), T̄U (K,m) is the point-wise maximum of

T̄1(K,m) and T̄2(K,m), which are both quasi-convex func-
tions from Lemma 1-2. From [9], T̄U (K,m) is a quasi-convex
function w.r.t. m, and we can obtain the optimal m∗(K) to
Problem (9) by applying the bisection method. Through the
one-dimension search and bisection method, we can obtain the
optimal K and m for Problem (8) as follows

(m∗,K∗) = argmin
K∈[1,Kmax]

T̄U (K,m
∗(K)). (10)

B. Alternating optimization based solution
The one-dimension search is complicated with a large

number of Kmax. To lower the computational complexity,
we leverage the AO method to obtain K and m iteratively.
In detail, given K, we can solve Problem (11) and obtain
the corresponding optimal m∗(K) from the above subsection.
Given m, the optimal K can be obtained by solving the
sequent problem

min
K

T̄U (K,m) s.t. (8b)− (8d), (11)

where (8b) is equivalent to K > K̄, and K̄ is an unique point
that makes the equality sign in (8b) valid. To solve Problem
(11), we provide the following lemma.

Lemma 3: T̄U (K,m) is a convex function w.r.t. K > K̄.
Proof 3: See Appendix C.

Based on Lemma 3, we can obtain the optimal K∗(m) to
Problem (14) via the bisection method.

IV. NUMERICAL RESULTS

In this section, we present the experimental results of the
proposed scheme and solutions to validate their effectiveness.
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Fig. 1. Average latency versus number of subtasks K.

Without loss of generality, we set f = 1 GHz, η = 500. The
allocated bandwidth W is 1 MHz, then we have t = 10−6

seconds. In addition, the received SNR at ESN is γ = 15
dB and the maximum PER is ϵmax = 10−9. Also, we set
Kmax = 100.

In Fig. 1, we show the minimal average latency with
different values of K. For different numbers of Ntol, the
optimal K is highlighted with a red circle. Compared with the
conventional scheme with K = 1, where the detailed process
can be found in [8], the proposed scheme can significantly
reduce the average latency. In Fig. 2, the convergence behavior
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Fig. 2. Average latency versus number of iterations.

of the proposed AO solution is provided, and the results
of the optimal solution are given for comparison, where
Ntol ∈ {5, 7.5, 10} Kbits. As shown in Fig. 2, the results of
AO-based solution converge with several iterations, and they
are close to the optimal results.

In Fig. 3, the variations of the average latency with the total
workload Ntol are demonstrated, where Ntol varies from 5 to
50 Kbits and η ∈ {500, 1000}. We denote the conventional
scheme and the proposed scheme as “K=1” and “Optimal K”,
respectively. The computing time of the whole task is provided
as a benchmark, which is the minimum achievable latency. As
we can see, the gap between the results of the conventional
scheme and the proposed scheme increases. Moreover, the

results of the proposed scheme are very close to the computing
time of the whole task, since the transmission and computation
of subtasks are done almost simultaneously.

5 10 15 20 25 30 35 40 45 50

N
tol

 (Kbits)

10 -2

10 -1

A
v

e
ra

g
e

 la
te

n
cy

 (
se

co
n

d
)

K=1,  =500

Optimal K, =500

Computing time, =500

K=1,  =1000

Optimal K, =1000

Computing time, =1000
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V. CONCLUSION

In this paper, we propose a transmit-while-compute scheme
with short-packet communications to reduce the average la-
tency of MEC networks. Moreover, the average latency mini-
mization problem is solved with the proposed optimal solution
and the low-complexity AO-based solution. Numerical results
validate the effectiveness of the proposed scheme and solu-
tions.

APPENDIX A
PROOF OF LEMMA 1

From (5), Lemma 1 can be proved by showing that
TS(K,m) is a quasi-convex function w.r.t. m. To this end,
we first derive the second-order derivative of ϵ̄ w.r.t. m, i.e.,

∂2ϵ̄

∂m2
= Q′′(−d(K,m))

(∂d(K,m)

∂m

)2

+Q′(−d(N,m))
∂2d(K,m)

∂m2
, (12)

where
∂d(K,m)

∂m
=
Cm−1/2 +N

−3/2
m

2V
> 0, (13)

∂2d(K,m)

∂m2
= −Cm

−3/2 + 3Nm−5/2

4V
< 0, (14)

From [4], when Q(−x) > 1/2 holds, we have

Q′(−x) = 1√
2π
e−

x2

2 > 0, Q′′(−x) = −x√
2π
e−

x2

2 < 0, (15)

which suggests that the value of (12) is negative and ϵ̄ is a
strictly concave function w.r.t. m. From (5), TS(K,m) is the
composition of a linear function divided by a concave function,
which is a quasi-convex function w.r.t. m and also relates to
only one minimum [9].

APPENDIX B
PROOF OF LEMMA 2

Take the first-order derivative of T̄2(K,m) in (6) w.r.t. m
to 0, and the roots to that, i.e., m̃ should satisfy(

ϵ̄− ∂ϵ̄

∂m
m− ϵ̄2

K − 1

K

)∣∣∣
m=m̃

= 0, (16)
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where
∂ϵ̄

∂m
= Q′(−d(K,m))

∂d(K,m)

∂m
.

To analyze the convexity of T̄2(K,m), we compute the
second-order derivative of T̄2,U (K,m) w.r.t. m and derive

∂2T̄2(K,m)

∂m2
=
Ktλ

ϵ̄4
, (17)

where

λ = −ϵ̄2 ∂
2ϵ̄

∂m2
m− 2ϵ̄2

∂ϵ̄

∂m
+ ϵ̄

( ∂ϵ̄

∂m

)2

m. (18)

From the sufficient condition of quasi-convex function in [9],
T̄2(K,m) is a quasi-convex function w.r.t. m if the value in
(17) is positive, which is equivalent to λ < 0, when m = m̃.
When m = m̃, substituting (16) into (18), λ can be written
as

λ = −δ(m̃)ϵ̄2
∣∣
m=m̃

, (19)
where δ(m) is defined as

δ(m) =
∂2ϵ̄

∂m2
m+ 2

∂ϵ̄

∂m
ϵ̄
K − 1

K
. (20)

Also, from (12), we find that δ(m̃) < 0 holds when K = 1.

When K ≥ 2, we have δ(m̃) < 0 if R(m̃) ≥ 1, where

R(m) =
(
− ∂2ϵ̄

∂m2
m
)/(

2
∂ϵ̄

∂m
ϵ̄
)

=
C2m−N2m−1

4V 2ϵ̄
+

Cm−1/2 + 3Nm−3/2

4ϵ̄(Cm−1/2 +Nm−3/2)
. (21)

Also, R(m) = 1 holds when ϵ̄ = 1/2. Therefore, R(m̃) ≥ 1
holds if R′(m̃) ≥ 0. Compute R′(m), which is given by

R′(m) =
(C2 + (N/m)2)ϵ̄− ∂ϵ̄

∂m
(C2m−N2m−1)

4V 2ϵ̄2

−
∂ϵ̄
∂m

(C + 3Nm−1)

4ϵ̄2(C +Nm−1)
− CNm−1

2ϵ̄(Cm1/2 +Nm−1/2)2
. (22)

From (16), we have
∂ϵ̄

∂m
=
ϵ̄− ϵ̄2(K − 1)/K

m
<

3ϵ̄

4m
, (23)

when m = m̃ and ϵ̄ > 0.5. Using (23) and the inequality of
arithmetic and geometric means, we can find that

R′(m) >

(
C2 + 7(N/m̃)2

V 2
− 11

m̃

)
1

16ϵ̄

∣∣∣
m=m̃

, (24)

Following (24), we see that R′(m̃) > 0 holds if
m̃2C2 − 11m̃V 2 + 7N2 ≥ 0. (25)

Based on the discriminant of the quadratic inequality, if
121V 4 − 28(CN)2 ≤ 0, (26)

then (25) holds, and (26) can be rearranged into
N ≥ 11V 2(2

√
7C)−1. (27)

Computing the first-order derivative of V 2/C w.r.t. γ, we can
evaluate the maximum of V 2/C and find that 11V 2(2

√
7C)−1

is smaller than 5/2. Taking the fact that the workload of a
subtask, i.e., N = Ntol/K, is generally greater than several
bits in practice, we can conclude that both δ(m̃) and λ are
negative with m = m̃. Hence T̄2(K,m) is a quasi-convex
function w.r.t. m. If m̃ does not exist, T̄2(K,m) is a monotone
function w.r.t. m and still a quasi-convex function.

In addition, if the minimum of T̄2(K,m) is not unique,
then there is at least one m̃ that makes the value of second-
order derivative of T̄2(K,m) w.r.t. m in (17) negative with
m = m̃, which contradicts to the results in (21)-(27). The
proof of Lemma 2 is completed.

APPENDIX C
PROOF OF LEMMA 3

We first rewrite T̄U (K,m) as
T̄U (K,m) = KTS(K,m) + ϕ(K), (28)

where ϕ(K) = max
(
TE(K), Ntolηf

−1 −
(
K − 1

)
mt

)
.

To continue, we calculate the second-order derivative of
KTS(K,m) w.r.t. K as

∂2KTS(K,m)

∂K2
=
ψ(K)

ϵ̄3
, (29)

where

ψ(K) = −ϵ̄ ∂
2ϵ̄

∂K2
− 2ϵ̄

∂ϵ̄

∂K
+ 2K

( ∂ϵ̄

∂K

)2

. (30)

From (1), we can compute
∂ϵ̄

∂K
= Q′(−d(K,m))

∂d(K,m)

∂K
< 0, (31)

since Q′(−d(K,m)) > 0 from (15) and
∂d(K,m)

∂K
= −Ntolm

−3/2

2V K2
< 0. (32)

Similarly, we can derive
∂2ϵ̄

∂K2
=Q′′(−d(K,m))

(∂d(K,m)

∂K

)2

+Q′(−d(K,m))
∂2d(K,m)

∂K2
< 0, (33)

since Q′′(−d(K,m)) < 0 from (15) and
∂2d(K,m)

∂K2
=
Ntolm

−3/2

V K3
> 0. (34)

From (30)-(34), we know that ψ(K) > 0 and KTS(K,m) is
a convex function w.r.t. K. Moreover, ϕ(K) is the point-wise
maximum of two convex functions, thus is convex. As such,
T̄U (K,m) is the sum of two convex functions KTS(K,m)
and ϕ(K), hence a convex function w.r.t. K.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[2] Z. Xiang, F. Gabriel, E. Urbano, G. T. Nguyen, M. Reisslein, and F. H. P.
Fitzek, “Reducing latency in virtual machines: Enabling tactile Internet
for human-machine co-working,” IEEE J. Sel. Areas Commun., vol. 37,
no. 5, pp. 1098–1116, 2019.

[3] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, 2010.

[4] X. Sun, S. Yan, N. Yang, Z. Ding, C. Shen, and Z. Zhong, “Short packet
downlink transmission with non-orthogonal multiple access,” IEEE Trans.
Wirel. Commun., vol. 17, no. 7, pp. 4550–4564, 2018.

[5] J. Yao, Q. Zhang, and J. Qin, “Joint decoding in downlink NOMA systems
with finite blocklength transmissions for ultrareliable low-latency tasks,”
IEEE Internet Things J., vol. 9, no. 18, pp. 17705–17713, 2022.

[6] C. She, Y. Duan, G. Zhao, T. Q. S. Quek, Y. Li, and B. Vucetic, “Cross-
layer design for mission-mritical IoT in mobile edge computing systems,”
IEEE Internet Things J., vol. 6, no. 6, pp. 9360–9374, 2019.

[7] J. Li, J. Tang, and Z. Liu, “On the data freshness for industrial Internet
of Things with mobile-edge computing,” IEEE Internet Things J., vol. 9,
no. 15, pp. 13542–13554, 2022.

[8] Y. Zhu, Y. Hu, A. Schmeink, and M. C. Gursoy, “Energy minimization of
mobile edge computing networks with HARQ in the finite blocklength
regime,” IEEE Trans. Wirel. Commun., vol.21, no. 9, pp. 7105–7120,
2022.

[9] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.


