ABSTRACT

CROSS-DEVICE FEDERATED INTRUSION DETECTOR FOR EARLY STAGE
BOTNET PROPAGATION

by Angela Grace Famera

A botnet is an army of zombified computers infected with malware and controlled by mali-
cious actors to carry out tasks such as Distributed Denial of Service (DDoS) attacks. Billions
of Internet of Things (IoT) devices are primarily targeted to be infected as bots since they
are configured with weak credentials or contain common vulnerabilities. Detecting botnet
propagation by monitoring the network traffic is difficult as they easily blend in with regular
network traffic. The traditional machine learning (ML) based Intrusion Detection System
(IDS) requires the raw data to be captured and sent to the ML processor to detect intrusion.
In this research, we examine the viability of a cross-device federated intrusion detection
mechanism where each device runs the ML model on its data and updates the model weights
to the central coordinator. This mechanism ensures the client’s data is not shared with any
third party, terminating privacy leakage. The model examines each data packet separately
and predicts anomalies. We evaluate our proposed mechanism on a real botnet propagation
dataset called MedBIoT. In addition, we also examined whether any device taking part in
federated learning can employ a poisoning attack on the overall system.
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Chapter 1

Introduction

Computer security plays an imperative role in our technologically advanced society. Malware
of all sorts, ranging from all levels of destruction, is continuously threatening individuals and
organizations. On the company level, 65% of business leaders in 2019 felt their cybersecurity
risks were increasing, and the average cost of a malware attack on a company is currently
$2.6 million [1]. On the individual level, 64% of Americans have never checked to see if
they were affected by a data breach in 2020 [1]. With the advancement of smart technology,
attacks on IoT devices also tripled in the first half of 2019, and the Mirai Distributed Denial
of Service (DDoS) worm (the Mirai botnet) was the third most common IoT threat in 2018
[1]. By 2025, there will be 41.6 billion connected IoT devices generating 79 zettabytes of
data [2], and damage related to cybercrime is projected to hit $10.5 trillion annually [1].

Security is a catch-up game. The attacker comes up with their strategy and weapon, and
the security professionals play defense in order to mitigate the attack. Security is historically
passive and defensive. Countermeasures and defenses for new attacks are implemented after
the damage is done. Malware detection is often signature-based, resulting in passive mon-
itoring of networks and systems for things that appear to be malicious base on previously
collected data and experience. This rat race is the reason why research in computer security
can never end.

Effective techniques to actively detect malicious network traffic are firewalls, Intrusion
Detection Systems (IDS), and Intrusion Prevention Systems (IPS). Firewalls block and filter
network traffic, IDS alert network administrators of anomalies in the network, and IPS take
action against anomalies in the network. IDS/IPS are generally installed after a firewall
on the edge of the network. These defense techniques require analyzing raw network traffic
data, which can cause privacy concerns when multiple devices and data silos are owned by
independent individuals and organizations. As effective as they are, firewalls, IDS, and IPS
are not built to conserve data privacy or learn independently from the data they are fed.
Federated learning can address both privacy and self-learning. This research aims to create
an IDS to detect IoT botnets on a packet-by-packet basis using federated learning before an
attack can take place. We also examine how poisoning attacks affect model performance.

1.1 Motivation

This research aims to add to our defense strategies against malware; specifically botnets.
Botnets were a popular research focus starting in the early 2000s as well as around 2016
with the release of Mirai (see Section 2.1.4). Mirai and other IoT botnet variants have only



increased and advanced since then with the surge of IoT devices. The surplus of innovative
research is from that 2000-2017 time frame, and limited updated discoveries on botnets
outside of regurgitated analysis using standard centralized machine learning techniques and
surveys exist compared to research on other forms of malware. This research aims not only
to bring back focus to botnets but also intends to use a federated learning-based intrusion
detection system to prevent botnet attacks before they occur while conserving confidentiality
and data privacy. We aim to answer the following research questions:

1. Is it possible to classify botnet malware while in the propagation and C&C phase on
a packet-by-packet basis?

2. Can we create an intrusion detection system using federated learning to predict botnet
propagation before an attack occurs by analyzing the content in independent network
packets?

3. Can we decrease model performance by simulating a targeted poisoning attack?

1.2 Contributions

Understanding how to detect and prevent a botnet attack before it happens can benefit the
security industry in many ways. The main contributions of this research are the following:

e We propose a new intrusion detection system mechanism based on federated learning
to preserve data privacy. Each device takes part in federated learning by training the
model locally so no data is shared.

e Usage of raw packet data from real and emulated network traffic captures during
propagation and C&C communication for three popular [oT botnets.

e We propose an online model analyzing network data on a per packet basis

e We designed a neural network model to identify botnet traffic at its early stages (i.e.
pre-attack)

e We examined whether poisoning attacks have an impact on model performance. A
poisoning attack occurs when an adversary injects bad data into a model. We simulate
this kind of attack using label-flipping based on known malware trends.

In this chapter, we introduced our research problem and its applications to computer
security. Chapter 2 will provide some background knowledge on botnets, federated learning,
and current research published on federated learning in cybersecurity. Chapter 3 offers
a holistic overview of our proposed architecture and how it differs from a standard IDS.
In Chapter 4, we discuss how we reviewed various published datasets, selected one, and
converted all the pcap files to csv format. Chapter 5 explains our design setup, and Chapter
6 goes over our results and discussion. We conclude with Chapter 7, where we discuss
limitations and opportunities for future work.



Chapter 2
Background & Related Work

In this chapter, we provide necessary background knowledge on botnets, their command
and control architectures, and a few variants. We also provide an introduction to federated
learning and the difference between cross-silo and cross-device learning models. The chapter
concludes with some recent related work and how our research differs.

2.1 Botnet Overview and Variants

In this section, we discuss the history of botnets and how they work. We also briefly discuss
three impactful IoT botnet variants used in the MedBlot [3] dataset: Bashlite, Mirai, and
Torii.

2.1.1 A Brief History of Botnets

Before examining the complexities of botnets, it is important to understand their history and
original intended purpose. While botnets often serve the hacker today, they were originally
developed to assist with the administration of Internet Relay Chat (IRC) servers [4]. IRC
is a text-based protocol developed in 1988 used by connected computers for real-time text
messaging [5]. IRC supported group chats in discussion rooms known as “channels,” as well
as private messages between individual users and data transfers [5]. The IRC consisted of
five main components [6]:

1. Servers: The point where clients and other servers could connect. The IRC networks
replicated a spanning tree, where each server acts as the central node for the rest of
the network it sees.

2. Clients: Anything connecting to the server that is not another server. Clients are
distinguished by unique nicknames, and the server keeps track of the real name of the
host the client is running on, the client’s username on that host, and the server to
which the client is connected.

3. Operators: A special class of clients allowed to perform maintenance functions on the
network. They keep order within the IRC.

4. Channels: A named group of one or more clients which will receive all messages sent
to that channel.
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5. Channel Operators: Commonly referred to as a “chop” or “chanop,” own a channel

and are responsible for keeping order and sanity within the channel.

IRC became a popular method used by botmasters to send commands to individual comput-
ers in their botnet through specific channels, public IRC networks, or separate IRC servers
[5]. Command-and-control (C&C) was coined after the server containing the channels used
to control the bots [5]. Originally, IRC administrators created botnets to perform automated
functions to assist with the administration of IRC servers [4]. Inevitably, this capability was
used for more malignant purposes.

Botnets developed into an attack mechanism used by cybercriminals to perform various
malicious actions, most commonly being Distributed Denial of Service (DDoS) attacks, spam
distribution, and network scanning, exploration, and exploitation [7]. A botnet is a collection
of bots connected to and controlled by a C&C channel [8]. Bots are constituted of host
machines, devices, and computers infected by malicious code that enslaves them to the
C&C [8]. The C&C updates and guides bots to perform the desired task by acting as the
communication link between the bots and an individual known as a botmaster [8]. The
botmaster’s primary purpose is to control the botnet by issuing commands through the
C&C to perform malicious and illegal activities.

2.1.2 Botnet C&C Architectures

The most critical part of a botnet is the C&C architecture [8]. The C&C is the only way
to control the bots within a botnet and is responsible for their smooth and collective oper-
ation. Therefore, if the C&C was destroyed, the botnet would no longer be able to carry
out its intended purpose. The three most common botnet C&C structures are centralized,
decentralized, and hybridized control [8, 9]:

e Centralized: Centralized C&C primarily uses HT'TP and IRC based protocols. Here,
there exists a central C&C giving instructions to the botnet. It is important to note
that a botnet structure is still considered centralized even if there exists more than
one server, so long as all the bots report to one of the n servers for communication.
See Figure 2.1 for better visualization of the differences in these centralized structures.
This architecture allows the botmaster to react quickly to events given the ability to
receive direct feedback from the bots. The botmaster can also coordinate the botnet
more efficiently, given the ability to easily monitor the botnet’s status and distribution.
However, if the C&C is taken down, the whole botnet is taken down with it because it
is also a central point of failure.

e Decentralized: Unlike centralized C&C, decentralized C&C uses Peer-to-Peer (P2P)
protocols in which all the bots are connected. These protocols focus on hiding the
C&C channels, and botmasters can call different bots for different issues. See Figure
2.2. Decentralized C&C is good for the attacker because the detection of one bot does
not jeopardize the whole botnet. It also allows for more flexible and robust botnets.
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Figure 2.1: Centralized C&C Architecture

e Hybridized: Hybridized botnets use a combination of the centralized and decen-
tralized C&C structure, often using encryption to hide botnet traffic. This structure
divides bots into two groups: servant and client bots. Servant bots are configured with
“static and routable” IP addresses, and are able to act as both clients and servers.
Client bots, on the other hand, are configured with “dynamically designated or non-
routable IP addresses,” and block any incoming connection. Servant bots listen to
determined ports for incoming connections and use “self-generated symmetric encryp-
tion” to communicate. See Figure 2.2 for more information.

Centralized or decentralized, one of the most serious threats to the internet today is the
collection of infected devices controlled by the hand of a singular malicious entity [8].

2.1.3 The Botnet Life Cycle

Botnets have a unique life cycle [8, 10]:

e Initial Injection: The host device is infected and becomes a potential bot. During
this phase, the attacker may use an array of different infection mechanisms, such as
infected files and removal disks or forced downloads of malware from various websites.

e Secondary Injection: The infected host runs a program that transforms the device
into a bot. Scripts are executed by the infected host that fetches the device’s binary
code via FTP, HTTP, or P2P protocol. This binary contains the addresses of the
machines and may be encoded directly as hard-coded IP addresses or domain names.
During this phase, the host becomes a bot.
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Figure 2.2: Decentralized and Hybridized C&C Architecture

e Connection: Through a process known as rallying, the bot establishes a connection
with the C&C server and becomes part of the botmaster’s botnet. This phase occurs
every time the host is restarted to let the botmaster know that the device is still able
to receive and act on malicious commands.

e Performance: The bot is able to receive commands and perform attacks. The C&C
enables the botmaster to monitor and control the botnet however seen fit.

e Maintenance: The bot’s malware is updated for the botmaster to maintain the bot-

net. Here binary’s are updated to ensure a connection with the C&C remains estab-
lished.

Methods of propagation include but are not limited to email attachments, infected websites,
and previously installed backdoors [8].

2.1.4 Important Botnets Variants

Many different botnet variants circle our internet today. We discuss Bashlite, Mirai, and
Torii because 1) they produce the malware traffic captured in the dataset we utilize (see
Section 4.1.5), and 2) they have an incredible impact on malware migrating to the [oT
space. A great example of this is Mirai, which is considered the first notable botnet to
launch a DDoS attack using loT devices.



Bashlite, 2014

Bashlite, also known as Gafgyt, Lizkebab, Qbot, Torlus, and LizardStresser, was originally
seen in 2014 utilizing Shellshock (a software bug) in bash shell to exploit devices running
BusyBox [11]. This exploit, coined as Bashdoor, is used by the malware to infect Linux
systems to launch DDoS attacks [11]. The botnet was created by the Lizard Squad, a black
hat hacking group specializing in DDoS attacks against gaming services [12].

In 2014, the botnet launched massive DDoS attacks against banks, telecommunication,
and government agencies in Brazil, as well as three large US gaming companies [13]. Lizard
Squad launched their DDoS attacks first on League of Legends servers taking them offline,
followed by attacks on PlayStation Network and multiple servers run by Blizzard, taking the
networks down for nearly a day [12]. Using IoT devices, the botnet has grown large enough
to launch a 400 Gbps attack without amplification [13].

The source code was leaked in 2015, and in 2016 around one million devices, most com-
monly manufactured by Dahua Technology, were reported as being infected by the malware
in Brazil, Colombia, and Taiwan [11, 14]. Of the identifiable bots in 2016, 96% of them were
reported as ToT devices, 4% home routers, and less than 1% Linux servers [11]. While the
malware can support multiple C&C servers, most variants have a single C&C hardcoded TP
address [11], making it a centralized C&C architecture.

Mirai, 2016

Mirai was an IoT botnet created by Paras Jha and Josiah White, co-founders of Protraf
Solutions [15]. Mirai has created the basis for many botnets that exist today due to the
original creators releasing the source code to the world (under the name “Anna-Senpai”)
back in 2016 on Hackforums.

Mirai’s first large-scale attack was on OVH, a French hosting platform. A source of
inspiration for Mirai was surrounding Jha’s interest in hosting a Minecraft game server.
Minecraft is a popular online video game where upwards of $100,000 can be earned by hosting
a game server in the summer months [16]. As a result, Jha was interested in performing
DDoS attacks against other Minecraft servers to attract business to his server [16, 17]. This
resulted in the first major DDoS attack, which occurred on September 19th, 2016, when
Mirai was used against OVH, a popular Minecraft hosting service.

During the DDoS attack, Mirai used 145,000 infected devices to send 1.1 Thps of data
traffic to OVH’s servers, bringing their services to a halt. This amount of traffic was un-
precedented in 2016, being magnitudes larger than vDOS, which maxed out at 50 Gbps [16].
vDOS was a popular DDoS-as-a-service provider and was used in the gaming industry to gain
a competitive advantage against opponents. Mirai could target multiple IP addresses at the
same time, allowing it to infect an entire network, rather than a specific server, application,
or website [16].

Shortly after the attack on OVH, Mirai launched another DDoS attack against Brain
Kreb’s security website Krebs On Security [16]. Jha admitted that this attack was paid for
by a customer who rented a bunch of Mirai-infected devices [18]. This DDoS attack peaked



at 623 Gbps, forcing Kreb’s DDoS mitigation service, Akamai, to drop Kreb’s website due
to the incurred costs by the attack [16]. It took four days for Krebs On Security to go back
online. Right after this attack was when Mirai’s source code was released to the dark web.

Soon after the attack on Krebs On Security, the release of the code resulted in an attack
that took down Dyn. Inc’s DNS servers, bringing down major websites on the east coast
of the United States [17]. Upon the release of Mirai’s source code, the hacker was able to
launch the attack in October 2016 that left the US east coast without access to Amazon,
Netflix, PayPal, and Reddit [16]. To this day, Dyn, Inc. is still unable to assess the full
weight of the assault.

The Krebs On Security attack brought Mirai to the forefront of the FBI’s investigation.
The FBI joined with the private industry to figure out the inner workings of Mirai. Akamai
created honeypots that allowed the investigators to observe how infected devices commu-
nicated with Mirai’'s C&C servers [16]. After the Dyn, Inc attack, a collaboration between
investigators grew, and engineers from around the world came together to discuss the threat
Mirai poses. The engineers see the attack on Dyn, Inc. as a proof of concept that it can
affect the entire Internet if it is not mitigated. While studying the Mirai servers, the in-
vestigators noticed a trend of the botnet targeting gaming servers, and more specifically,
Minecraft servers. This led investigators to discover the original intention of Mirai, which
was to target Minecraft game servers in order to gain a competitive edge [16].

Torii, 2017

Torii is a botnet that surfaced in 2017 and gained notoriety for more advanced techniques
used when compared to Mirai and Bashlite [19]. It is able to infect a wide range of device
architectures, such as MIPS, ARM, x86, x64, PowerPC, SuperH, and others [19]. The mal-
ware prioritizes stealth and persistence, using encryption when communicating with its C&C
server and tunneling communication through the Tor network [20]. Infecting systems that
have been Telnet exposed and protected by weak credentials, the malware uses commands
like “wget” and “busybox wget” to deliver the binary payloads, and is special in the sense
that it can survive device system reboots [20]. As of now, the purpose of Torii is assumed to
be DDoS attacks for mining cryptocurrencies, but this is speculation as the intentions are
still unclear [20].

2.2 Applications of Machine Learning in Cybersecurity

Machine learning is the study of algorithms used for building applications that learn from
data and are self-programmed to improve their accuracy over time [21]. Algorithms in ma-
chine learning are trained to recognize patterns in large quantities of data to make predictions
and accurate decisions with new data [21]. The final algorithm used after all adjustments
are made to produce the desired result is known as a model [21]. Similar to how humans
learn from experience, machine learning attempts to teach computers to do the same, mak-
ing it a sub-field of Artificial Intelligence (AI) and a plausible active approach to malware



detection. There are four basic steps performed by data scientists when building machine
learning applications:

1. Selecting and preparing training data [21]. This data will be representative of the input
ingested by the algorithm used to solve the desired problem [21].

2. Choosing an algorithm to run on the training data [21]. The type of algorithm chosen
will be dependent on the data available and the type of problem that needs to be solved
[21].

3. Training the algorithm to construct a model [21]. This involves repeatedly running
variables through the algorithm and adjusting weights and biases in order to produce
an accurate and consistent output or result [21].

4. Using the model with the new data and ensuring it improves in accuracy and effective-
ness over time [21].

The following subsections go into further detail about the types of common machine
learning methods and how they differ from federated learning.

2.2.1 Types of Machine Learning

Machine learning uses many different methods to learn from data and build models. The
five most common methods are supervised, unsupervised, semi-supervised, reinforcement,
and deep learning methods [21, 22].

Supervised Learning

Supervised learning is one of the most widely used machine learning methods and utilizes
labeled datasets [22]. Labeled datasets are designed to train or “supervise” algorithms into
accurately classifying data or prediction outcomes [23]. Supervised learning can be separated
into two types of problems when data mining: classification and regression [23].

Classification is the problem of assigning a category to each item in the dataset [24]. An
example would be classifying a dog as a German Shepherd or a Movie as a comedy. The
number of classification categories for a given dataset is usually under a few hundred, but can
be unbounded when it comes to tasks like text or speech classifications [24]. Common types
of classification algorithms are linear classifiers, support vector machines, decision trees, and
random forests [24].

Regression is the problem of predicting a real value for each item [24]. It is a learning
method used to understand the relationship between dependent and independent variables
[23]. Some examples of regression are predicting stock values in a given market, or pre-
dicting sales revenues for a given business [23, 24]. Popular regression algorithms are linear
regression, logistic regression, and polynomial regression [23].



Unsupervised Learning

Unsupervised learning involves analyzing unlabeled data to extract meaningful features nec-
essary to sort, label, and classify the data in real time without human intervention [21].
These algorithms are used to identify patterns humans would miss [21]. Unsupervised learn-
ing is used for three main tasks: clustering, association, and dimensionality reduction [23].
Clustering is the problem of partitioning a set of items into homogeneous subsets and is
often used with very large datasets [24]. It is used to group unlabeled data based on their
similarities or differences [23]. Association is used to find relationships between variables in a
given dataset [24]. These patterns are in the form of “if-then” relationships called association
rules [21]. Dimensionality reduction is used to transform an initial representation of items
into a lower-dimensional representation while preserving some of the original properties [24].
In other words, it reduces the number of data inputs in a dataset with a large number of
features to a manageable size while still preserving the integrity of the data [23].

Semi-Supervised Learning

Semi-supervised learning is a combination of supervised and unsupervised learning. It is a
happy medium that uses labeled and unlabeled training data and is useful when relevant
features are difficult to extract from data [23].

Reinforcement Learning

Reinforcement machine learning, rather than being trained through sample data, learns as
it goes using trial and error [21]. Training data used in reinforcement learning is assumed to
provide only an indication as to whether an action is correct or not [22]. Incorrect actions
denote that there still exist problems in finding the correct action and that the model still
needs to improve [22]. On the other hand, a sequence of successful outcomes is reinforced to
develop the best recommendations for a given problem, [21].

Deep Learning

Deep learning is a subset of machine learning where the algorithms define an artificial neural
network designed to learn the way a human brain learns [21]. They require large amounts
of data to pass through multiple layers of calculations and make use of gradient-based opti-
mization algorithms to adjust and improve outcomes [22, 21]. Current types of deep learning
models are convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

2.2.2 Federated Learning Process

The federated learning process used in this research encompasses a combination of supervised
and deep learning. Federated learning is a machine learning method where multiple clients
collectively train a model using their own data in a decentralized manner under the guidance
of a central server [25]. In 2016, the term “Federated Learning” was coined by McMahan
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Figure 2.3: Federated Learning Architectures

et al. in [26] as a learning task is solved by a loose federation of participating devices.
Federated learning differs from distributed learning in the sense that a traditional distributed
system encompasses distributed computation and storage [27]. The primary advantage of the
federated learning approach is to remove a model’s need for direct access to raw training data,
resulting in enhanced privacy [26]. Its advantages are often described for the medical setting,
where medical organizations can train models on patient data without violating privacy laws
or exposing clients’ medical history. Because of the emphasis on privacy, this makes the
federated learning framework attractive for cybersecurity, given it will inherently protect
data security and confidentiality [28]. There are two notable types of federated learning, 1)
Cross-device and 2) Cross-silo (see Figure 2.3). The following section will discuss each one
more in-depth.

Crossed Device Federated Learning

The clients are a very large number (i.e. thousands or millions) of mobile, edge, or IoT
devices [25]. Here each client stores its own data and is unable to see the data produced by
another client, and the data is not independently or identically distributed [25]. There is a
central server that supervises training but does not have access to the raw data, only the
model parameters returned by the clients. In this type of learning style, only a fraction of
the clients are available via the internet or similar connections. This produces three main
concerns with the Cross-device approach: 1) communication (i.e. slow connections between
clients and server), 2) clients failing or dropping out during training due to bandwidth and
battery or processing power, and 3) potential bias in devices selected given clients cannot be
indexed directly [25].
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We use the Cross-device approach in our research. We use a labeled dataset and feed
it through distributed clients sharing a simple neural network model for training. We aim
to reduce the complexity of our network given the low processing or computing power 10T
devices may exhibit. In our simulation, each client acts as an IoT device and stores network
packet data.

Cross-Silo Federated Learning

A data silo is a repository of data stored in a standalone system controlled by a single
department or business unit within an organization [29]. As the name suggests, Cross-silo
federated learning trains a model on siloed data, making the clients different organizations or
geographically distributed datacenters (typically 2 - 100 clients) [25]. Similar to Cross-device,
data is generated locally and remains decentralized while a central server organizes training
[25]. The main concerns with this method surround communication or computation, but
each client has an ID for specified access and all the clients can participate in the federation
rounds (unlike Cross-device, where clients are randomly selected and should not appear more
than once for training).

The Federated Learning Lifecycle

Similar to the steps mentioned at the beginning of the section for building a machine learning
model, federated learning has its own lifecycle. The steps in the federated learning process
are as follows [25]:

1. Identifying the problem to be solved with federated learning.
2. Training data is distributed among clients (simulation environment).

3. Federated model training begins.
(a) The server samples a set of clients.
(

b

)

) Selected clients download current model weights and a training program.
c¢) Clients locally compute and update the model.
)

)

(

(d

(e) The server locally updates its model based on the aggregated data computed from
the clients.

The server collects an aggregate of the device updates.

4. The federated model is evaluated after sufficient training.
5. The model is deployed within the data center or network using a staged rollout.

In our research, we completed steps 1-4. We identified our problem domain as the malware
prediction pre-attack phase. Our training data was distributed randomly among our non-1D
clients. However, in our work, all the clients participated and were selected. They could have
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been randomly selected, but we used a smaller number of clients with larger distributions
of data. We trained our model 10 times with and without a poising attack as described in
Section 6.1. The only step we did not complete is Step 5, given we did not deploy our model
anywhere.

2.3 Related Work

Malware detection and federated learning are widely researched topics. Ghimire et al. com-
pile a comprehensive survey on federated learning for cybersecurity in relation to IoT devices
[28]. The survey discusses a variety of topics, primarily focusing on applications of federated
learning in cybersecurity, performance issues associated with federated learning, current re-
search, and available datasets. They present a detailed study on federated learning models
used for cybersecurity and their associated performance metrics and challenges. They dis-
cuss the limitations of federated learning in the IoT space, such as limited device memory,
battery power, and computing power. In summary, it appears to be the most recent survey
of all things federated learning in relation to cybersecurity and IoT devices.

Rey et al. use federated learning to detect malware in IoT devices [30]. The researchers
perform both supervised and unsupervised federated learning using N-BaloT, a dataset com-
piled in 2018 containing attack data from nine IoT devices infected by Mirai and Bashlite
(see Section 4.1.2). They achieve accuracies, True Positive Rates (TPR), and True Nega-
tive Rates (TNR) of +99% in their Multi-Epoch and Mini-Batch supervised models. They
achieve similar results for their unsupervised models, obtaining a TPR of +99% and TNR
between 91%-96% using Multi-Epoch and Mini-Batch averaging. They also perform benign
label flipping, attack label flipping, all label flipping, gradient factor, and model canceling
attacks and show that while averaging proves to be the best aggregation function in these
scenarios, they are not entirely resilient.

This is the most closely related paper to our research, performing similar classifications
and attacks while achieving impressive results. However, there are a few key differences
between Rey et al. and our research. Two of the most important are first, we are using
an entirely different dataset. Rey et al. use N-BaloT, which contains attack data from two
botnets. We are using MedBloT, a more recent dataset that contains propagation data from
three botnets. Second, we are examining our instances on a packet-by-packet basis similar
to how an intrusion detection system would. We do not use statistics collected from the
packet streams, but rather examine each packet and its contents independently. The dataset
Rey et al. contains statistics such as the weight of a packet stream, the magnitude between
two streams, the covariance between two streams, etc. We look at the raw data such as IP
header length, time to live, and other features described in Table 5.1.

Galvez et al. present a malware classifier leveraging federated learning for Android appli-
cations called LiM (‘Less is More’) [31]. LiM uses a safe semi-supervised learning ensemble
(SSL) to maximize accuracy with respect to a baseline classifier on the cloud by ensuring
unlabeled data does not worsen the performance of a fully supervised classifier. Using An-
droZoo dataset, the researchers show that the cloud server is able to achieve an fl score
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of 95% and that clients produce a perfect recall with only one false positive. In addition,
the researchers also test poisoning and inference attacks on their model and show that it is
resistant to such malicious behavior.

Prior to [31], Hsu et al. present a privacy-preserving federated learning (PPFL) android
malware detection system [32]. Implementing the PPFL using support vector machines, the
researchers demonstrate its feasibility using an Android malware dataset by the National
Institute of Information and Communication Technology (NCIT) containing over 87,000
APK files from the Opera Mobile Store. Using secure multi-party computation (SMPC),
which lets multiple participants combine private inputs, the mobile devices can utilize edge
devices to collaboratively train a global model without leaking information. The researchers
show that their federated model can achieve a higher accuracy than their localized model, as
well as being comparable to their centralized model. They also show that accuracy increases
as the number of clients increases.

Zhao et al. propose a multi-task deep neural network in federated learning (MT-DNN-
FL) to perform network anomaly detection tasks, VPN (Tor) traffic recognition tasks, and
traffic classification tasks simultaneously [33]. They use three datasets: CICIDS2017, IS-
CXVPN2016, and ISCXTor2016. When compared to baseline centralized methods like deep
neural networks, logistic regression, KNNs, Decision Trees, and Random forests, MT-DNN-
FL performs better by achieving precision and recall scores between 94%-99%. The multi-
task methods also reduce training time.
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Chapter 3

Proposed Cross-Device FL IDS
Architecture

The following sections discuss a holistic overview of the thesis project. We provide a broad
overview of the components of a standard IDS, followed by how botnets could normally be
detected on a by-packet basis. We then briefly summarize our federated model IDS, as well
as the poisoning attack we plan to launch against it.

3.1 Components of the IDS

An intrusion detection system is a software application used to monitor networks for mali-
cious traffic. A standard IDS can be broken up into various types, such as network-based,
host-based, signature-based, and anomaly-based [34]. Network-based IDS analyze network
traffic, host-based analyze operating system files, signature-based analyze patterns/signa-
tures of malware, and anomaly-based analyze unknown attacks using machine learning.
Figure 3.1 displays a general IDS as it is most widely used in the market. When a router
connects to the internet, a firewall is commonly put up to block specified malicious traffic.
An IDS can be placed before or after a firewall, but it is optimal to put it after so the firewall
takes the brunt of the action and the IDS can catch malicious stragglers the firewall may
miss. Then whatever traffic passes through the IDS is allowed to enter the private network.

Anomaly-based IDS solutions model “normal” behavior within the system, labeling pack-
ets as potential threats if they present anomalous behavior. This is beneficial for a closed
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Figure 3.1: Standard IDS Setup
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or private organizational network where there could be such a thing as “normal” traffic be-
havior, but this becomes difficult to pinpoint as open networks and IoT devices grow in size.
We propose a slightly different architecture.

3.2 Detecting Botnet Propagation

As discussed in Section 2.1.3, the phases of the botnet lifecycle are initial injection, secondary
injection, connection, performance, and maintenance. During the initial and secondary
injection, the host device is infected by either weak credentials or system vulnerabilities.
For example, Mirai would infect devices by performing a brute force attack at guessing
common or insecure credentials, such as “admin” and “admin” for username and password.
Mirai had a list of 60 common usernames and passwords, and would randomly to chose 10
from that list. Bashlite would infect devices via Shellshock, a bash vulnerability that allowed
the execution of arbitrary commands to gain unauthorized access when concatenated to the
end of function definitions. Torii is more sophisticated in the sense it will download different
binary payloads based on the architecture of the targeted device. More sophisticated botnets
are sneaky when infecting devices, and it is difficult to tell when a device has been infected.
After infection, the device is then connected to the C&C, and it awaits instruction. Once it
receives the instruction to do so, it can then carry out attacks.

The ability to detect the early botnet phases before receiving instruction from the C&C
to attack is important. We believe analyzing the individual network packets may be one of
the best ways to do this. If we can identify communication traffic, we can more likely identify
the C&C and put up defenses against it. To analyze the individual packets, we examine the
information stored in the packet headers. The packet attributes we initially analyzed using
Wireshark are shown in Table 3.1. Section 4.3 and Table 5.1 discuss the packets we ended
up using as predictors given their data type and easy ability to encode. We believe a system
that analyzes on a per-packet basis is a beneficial way to detect discrepancies between normal
and malicious traffic.

3.3 Federated Machine Learning Approach

Figure 3.2 displays a holistic overview of our proposed architecture. The components of the
architecture are listed below:

e Federated IDS: The intrusion detection systems that utilizes federated learning to
differentiate between anomalous and normal network data on a per-packet basis.

e Devices: Unlike the standard IDS system, our IDS would be able to connect to
multiple devices on multiple networks. The devices would train our model, then report
the model weights back to the IDS without having to share data.

e Internet Routers: What allows the devices to connect to the internet.
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We want our intrusion detection system to use federated learning to detect anomalous traffic.
There are a few important key points to this. First, we want to use federated learning
because it conserves data privacy. In theory, our IDS would be connected to different routers,
therefore being connected to different networks. Within each network, the IDS should be
able to randomly select any device connected to that network for model training. The central
IDS or server will distribute its model to the selected devices, and each device will run the
model on its own network data. Devices would not have to share their network data with
other devices or the IDS. The devices do not interact with each other, but rather send their
updated model weights back to the IDS for it to average and distribute to a new randomly
selected set of devices.

As mentioned briefly in Section 2.2.2; federated learning is most popularly explained
in the medical setting given its ability to keep patient data confidential between different
organizations. But why would we want to keep network data private to the device? Packets
hold an array of information that could be used to cause harm if it falls into the wrong
hands. A good example is IP addresses. Anyone can use your IP address to track and follow
you around if not kept private. Based on the destination address you send information to,
anyone could also exploit you via your browsing history and internet activity. People can
also sniff traffic if the communication channels are not secure. As a result, we don’t want to
pass or transport any raw data past the device, just the model weights to conserve privacy
and confidentiality.

Second, we want to use federated learning to aggregate more information from multiple
networks. A typical IDS sees all the network traffic coming into a network. Our approach
allows us to connect to multiple networks, allowing us to process more data without actually
seeing the data. More data from different networks allows us to build better models because
they will have more content to learn from. Third, the nature of anomaly detection will be
more robust. Rather than building a model to recognize “normal” traffic and flag everything
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that does not fit that standard, we also want our model to recognize hard-to-detect malicious
traffic. For example, during botnet propagation and C&C communication, it is very easy
for that traffic to blend in with normal traffic. While it is good to be able to predict attack
traffic, ideally we would like to take a more proactive approach to recognize anomalies before
harm can be done. Especially since the main attack mechanism of botnets is DDoS attacks,
there is not much someone can do to mitigate that circumstance in the heat of the moment.
That is why to start small, we stuck with a dataset that only contains propagation and C&C
communication data, rather than using a more popular dataset that contains physical attack
data from botnets and other forms of malware.

In summary, we propose an IDS that should be able to randomly select devices from
multiple networks to learn how to detect anomalies. To avoid exposing private information
across devices or through the internet, all data remains local to the device, and only the
model weights are updated and adjusted. We take the approach of trying to differentiate
between “normal” and “anomalous” traffic since normal traffic may be hard to define in
larger networks that are open or have many devices connected to them. We propose training
our model on pre-attack data to help it focus on learning the discrepancies between malicious
and benign network traffic when they are hard to tell apart.

3.4 Poisoning Attack by Participant Node

Poisoning attacks happen when a hacker tries to inject fake training data into a model to re-
duce or hinder its performance. There are four main categories of poisoning attacks: 1) logic
corruption, 2) data manipulation, 3) data injection, and 4) Domain Name System (DNS)
cache poisoning [35]. Logic corruption is where the attacker changes the logic of the systems
to disrupt how the system learns [35]. Data manipulation is where the attacker manipulates
the data rather than the logic [35]. Data injection is when fake data is inserted into the
actual dataset to skew model results and weaken outcomes [35]. Last, DNS cache poisoning
is when the attacker corrupts DNS data, causing the name server to return incorrect results
[35]. The type of poisoning attack we try to replicate is a data manipulation attack. Since we
are using supervised learning (see Section 2.2.1), we emulate an attack as if a malicious user
switched the malware labels to benign to cover up bad traffic. We tried to be sophisticated
with our approach using label-flipping. We researched the most popular source port among
the malicious data in the dataset and found port 23 to be on top. As a result, we flipped all
the labels from 1 to 0 for packets with a source port equal to 23 in the first client.
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Table 3.1: Original Wireshark Keys

Key

Description

Type

frame.encap_type

Frame Encapsulation Type

Signed Integer (2 Bytes)

frame.time

Frame Arrival Time

Date and Time

frame.time_epoch Epoch Time Time Offset
frame.offset_shift Time Shift for This Packet Time Offset
frame.time_delta Time Delta from Previous Captured Frame Time Offset
frame.time_delta_displayed Time Delta from Previous Displayed Frame Time Offset
frame.time_relative Time Since Reference of First Frame Time Offset

frame.number

Frame Number

Unsigned Integer (4 Bytes)

frame.len

Frame Length on The Wire

Unsigned Integer (4 Bytes)

frame.cap_len

Frame Length Stored in Capture File

Unsigned Integer (4 Bytes)

frame.marked

Frame is Marked

Boolean

frame.ignored

Frame is Ignored

Boolean

frame.protocols

Protocols in Frame

Character String

frame.coloring_rule.name

Coloring Rule Name

Character String

eth.dst

Destination Address

Ethernet or Other MAC Address

ip.checksum

Header Checksum

Unsigned Integer (2 Bytes)

eth.src Source Address Ethernet or Other MAC Address
eth.type Protocol Field Unsigned Integer (2 Bytes)
ip.dsfield Differentiated Service Field Unsigned Integer (1 Byte)
ip.len IP Total Length Unsigned Integer (2 Bytes)
ip.id IP Identification Unsigned Integer (2 Bytes)
ip.flags IP Flags Unsigned Integer (1 Byte)
ip.ttl Time to Live Unsigned Integer (1 Byte)
ip.proto IP Protocol Unsigned Integer (1 Byte)

(

(

ip.checksum.status

Header Checksum Status

Unsigned Integer (1 Byte)

ip.src

Source Address

IPv4 Address

ip.dst

Destination Address

IPv4 Address

tcp.sreport

Source Port

Unsigned Integer (2 Bytes

tcp.dstport

Destination Port

Unsigned Integer (2 Bytes

tcp.stream

Stream Index

Unsigned Integer (4 Bytes

)
)
)
)
)
)

tcp.len TCP Segment Length Unsigned Integer (4 Bytes
tcp.seq Sequence Number Unsigned Integer (4 Bytes
tcp.seq_raw Raw Sequence Number Unsigned Integer (4 Bytes
tcp.nxtseq Next Sequence Number Unsigned Integer (4 Bytes)
tep.ack Acknowledgement Number Unsigned Integer (4 Bytes)
tcp.ack_raw Raw Acknowledgement Number

tep.hdr_len Header Length Unsigned Integer (1 Byte)
tcp.flags Flags Unsigned Integer (2 Bytes
tcp.window _size_value ‘Window Unsigned Integer (2 Bytes

tcp.window _size

Calculated Window Size

tcp.window _size_scalefactor

Window Size Scaling Factor

Unsigned Integer (4 Bytes

tcp.checksum

Checksum

)
)
Unsigned Integer (4 Bytes)
)
)

Unsigned Integer (2 Bytes

tcp.checksum.status

Checksum Status

Unsigned Integer (1 Byte)

tcp.urgent_pointer

Urgent Pointer

(
(
(
(
(
(
(
(
Unsigned Integer (4 Bytes)
(
(
(
(
(
(
(
(

Unsigned Integer (2 Bytes)

tcp.time_relative

Time Since First Frame in This TCP Stream

Time Offset

tcp.time_delta

Time Since Previous Frame in This TCP Stream

Time Offset

tcp.analysis.bytes_in_flight

Bytes in Flight

Unsigned Integer (4 Bytes)

(
tcp.analysis.push_bytes_in_flight | Bytes Sent Since Last PSH Flag Unsigned Integer (4 Bytes)
udp.srcport Source Port Unsigned Integer (2 Bytes)
udp.dstport Destination Port Unsigned Integer (2 Bytes)
udp.length Length Unsigned Integer (2 Bytes)
udp.checksum Checksum Unsigned Integer (2 Bytes)
udp.time_relative Time Since First Frame Time Offset
udp.time_delta Time Since Previous Frame Time Offset
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Chapter 4

Processing Packet Captures to
Dataset for Machine Learning

This chapter goes over the different publicly available datasets commonly used by researchers
in the cybersecurity field. We talk about why we chose MedBloT, and our process of con-
verting all the pcap files to csv format to generate a single dataset.

4.1 Exploring Available Datasets

The following subsections discuss the most common published datasets relating to malware
network traffic. We summarize each dataset before explaining why we chose to move forward
with MedBIoT.

4.1.1 CTU-13

CTU-13 consists of real botnet traffic mixed with normal/background traffic [36]. This traffic
can be separated into 13 captures (i.e. scenarios) of different botnet samples. These botnet
samples include Neris, Rbot, Virut, Menti, Sogou, Murlo, and NSIS.ay. Since it was created
in 2014, it does not contain IoT device data or IoT-specific botnets such as Mirai. The data
is stored in pcap files. In summary, CTU-13 is a dataset consisting of 13 scenarios covering
botnet data predating Mirai and other IoT botnets.

4.1.2 N-BaloT

N-BaloT contains real traffic data gathered from nine IoT devices infected by Mirai and
Bashlite [37]. These devices are a Danmini Doorbell, Ecobee Thermostat, Ennio Doorbell,
Philips B120N10 Baby Monitor, Provision PT-737E Security Camera, Provision PT-838
Security Camera, Samsung SNH 1011N Webcam, SimpleHome XCS7-1002-WHT Security
Camera, and SimpleHome XCS7-1003-WHT Security Camera. The malicious portion of the
data is divided into 10 different attacks carried out by the two botnets. Containing 7,062,606
instances and 115 features in total, the attribute information can be grouped by stream
aggregation statistics, time frame (The decay factor Lambda used in the damped window),
and statistics extracted from the packet stream (i.e. weight, mean, standard deviation,
radius, magnitude, covariance, and Pearson correlation). In summary, this dataset contains
statistics in csv format from 10 attacks by two botnets on nine IoT devices.
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4.1.3 Kitsune

Kitsune includes nine different attacks on a commercial IP-based surveillance system and
IoT network [36]. These attacks are OS Scan, Fuzzing, Video Injection, ARP MitM, Active
Wiretap, SSDP Flood, SYN DoS, SSL Renegotiation, and Mirai exploitation and scanning.
The dataset contains the preprocessed csv with 115 features extracted using their AfterImage
feature extractor, providing a statistical snapshot of the network. The dataset also contains
the raw pcap files. The botnet data makes up a small portion of the dataset, consisting of
764,137 out of 27,170,754 instances. In summary, Kitsune contains the statistical data and
network captures associated with 9 different attacks, one relating to botnets (Mirai).

4.1.4 loT-23

[0T-23 is a labeled dataset with malicious and benign [oT traffic, 20 of which are malware
captures, and three of which are benign captures [38]. The 23 captures are known as scenarios
and are divided into 20 pcap files from the infected devices. Each malicious scenario executes
a malware sample in a Raspberry Pi (simulated). The three benign scenarios were obtained
using a Philips HUE smart LED lamp, an Amazon Echo home intelligent personal assistant,
and a Somfy smart doorlock (real). It includes various forms of malware, such as Mirai, Torii,
Trojan, Gagfyt, Kenjiro, Okiru, Hakai, IRCBot, Hajime, Muhstik, and Hide and Seek (HNS).
In summary, IoT-23 contains a mix of 23 real and simulated network traffic encompassing a
variety of different malware in pcap format.

4.1.5 MedBloT

MedBIoT contains data focusing on the early stages of botnet deployment: propagation and
C&C communication [3]. A combination of real and emulated devices are used, making up for
a total of 83 devices. The real devices include a Sonoff Tasmota smart switch, TPLink smart
switch, and a TPLink light bulb. The Emulated devices include locks, switches, fans, and
lights. These devices are infected with the Mirai, Bashlite, and Torii botnet malware. The
data is stored in two formats, one being the raw pcap files and the other being the structured
statistics in csv format. In summary, this dataset contains both pcaps and statistics in csv
format of the propagation and C&C communication of three botnets over 83 devices. We
use the raw pcap files in order to analyze the packets independently of one another.

4.1.6 X-IIoTID

X-IIoTID contains data from the Industrial Internet of Things (IloT), including the behav-
ior of new IloT connectivity protocols, the activity of recent devices, and diverse attack
protocols [39]. The dataset consists of multi-view features such as network traffic, host
resources, logs, and alerts from various attacks. These attacks include generic scanning,
scanning vulnerabilities, WebSocket fuzzing, discovering CoAP resources, brute force at-
tacks, dictionary attacks, malicious insider, reverse shell and Man-in-the-Middle, MQTT
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Table 4.1: Surface-Level Comparison of Available Datasets

Dataset Name Month Year Description Format | Publication
Intrusion dataset for

X-IToTID August 2021 Industrial Internet of Things (IT1oT) Csv [39]

Early stages of botnet deployment:

spreading and C&C communication

Labeled dataset with malicious

ToT-23 January 2020 and benign IoT network traffic PCAP (38]

MedBlot February | 2020 PCAP [3]

Collection of nine network attack

Kitsune October 2019 Csv [36]
datasets

N-BaloT May 2018 Traffic da.Lta gatherec.l from nine sV (37]
commercial IoT devices

CTU-13 2014 Labeled dataset with botnet, PCAP [40]

normal and background traffic

cloud broker-subscription, Modbus-register reading, TCP Relay attacks, command and con-
trol, data exfiltration, poisoning of cloud data (i.e., false data injections), fake notification
crypto-ransomware, and ransom denial of service attack. It contains 820,834 instances and 68
features in csv format. In summary, X-IIoTID contains various attack data from Industrial
Internet of Things devices.

4.2 Choosing MedBlot

We chose to move forward with MedBIoT for a variety of reasons. Originally we tried to run
the Mirai source code on our own using virtual machines to capture real-time network traffic.
We faced many issues with this, including issues with running the source code, setting up
the virtual machines, incompatibilities between Microsoft and Linux distributions and lack
of Microsoft certificates, and operating system version incompatibilities. As a result, we had
to switch gears and search for datasets containing Mirai traffic. We liked MedBloT because
not only did it contain real-time traffic data using Mirai, but it also contained data from
two other botnets (Bashlite and Torii) that many variants base their source code on. The
data is compiled of network traffic from multiple emulated and real IoT devices, does not
contain data from any other forms of malware, and only contains propagation and C&C
communication traffic. Botnets are deemed to be most vulnerable during communication
with the C&C because this stage allows botnet mitigators to identify traffic patterns and
identify components of the botnet or the C&C [8]. We were not interested in data containing
attack traffic, so MedBloT was the most applicable to our research area and proved to be a
better route than continuing to struggle to emulate a less in-depth network.

MedBIoT provides the pcaps in two main formats: bulk and fine-grained. The bulk
data is separated by source type (i.e legitimate, Mirai, Bashlite, and Torii). The fine-
grained data is separated by each data source, botnet phase, and device type. The pcaps
are in the format SOURCE-TYPE_TRAFFIC-TYPE_PHASE _DEVICE.pcap. For example,
mirai_mal_CC_lock.pcap would be the name of one of the files, with “mirai” being the source
type, “mal” being the traffic type, “CC” being the phase, and “lock” being the device.
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818:13:26.400524 02:42:c0:a8:0a:ae Raspberr_12:88:4d ARP 60 Who has 192.168.10.1007 Tell 192.168.10.174
9 18:13:26.400790 Raspberr_12:88:4d 02:42:c0:28:0a:ae ARP 60 192.168.10.100 is at b8:27:eb:12:88:4d
10 18:13:26.418123 Raspberr_12:88:4d 02:42:c0:28:0a:ae ARP 60 Who has 192.168.10.174? Tell 192.168.10.100
11 18:13:26.418318 02:42:c0:28:0a:ae Raspberr_12:88:4d ARP 60 192.168.10.174 is at 02:42:c0:a8:0a:ae
12 18:13:26.772493 192.168.10.170 192.168.10.100 MQTT 68 Ping Request
13 18:13:26.773298 192.168.10.100 192.168.10.170 MQTT 68 Ping Response
14 18:13:26.773518 192.168.10.170 192.168.10.100 TCcP 66 43149 > 1883 [ACK] Seq=3 Ack=3 Win=229 Len=@ TSval=1771979352 TSecr=2650334077
15 18:13:26.812709 192.168.10.111 8.8.8.8 DNS 72 Standard query @x6d93 A rb.symcd.com
16 18:13:26.851262 8.8.8.8 192.168.10.111 DNS 174 Standard query response @x6d93 A rb.symcd.com CNAME ocsp-ds.ws.symantec.com.edgekey.net CNAME e8218.dscbl.akamaiedge.net A 2..
17 18:13:26.854651 192.168.10.111 23.51.123.27 TCcP 66 49736 > 80 [SYN] Seq=0 Win=6424@ Len=@ MSS=1460 WS=256 SACK_PERM=1
18 18:13:26.878748 23.51.123.27 192.168.10.111 TCcP 66 80 > 49736 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1420 SACK_PERM=1 WS=128
19 18:13:26.878845 192.168.10.111 23.51.123.27 TCcP 54 49736 > 80 [ACK] Seq=1 Ack=1 Win=66560 Len=0
20 18:13:26.879019 192.168.10.111 23.51.123.27 HTTP 370 GET /MFEwTZBNMEswSTAJBgUrDgMCGgUABBTDRSYViRCZTxmZjLENmNwVL1y9QQUIMAGTknrOUvdk%2B]cobhHdglyAl1gCEGZYxb%2BG6ZEK%2BZdT sKegFUw%3...
21 18:13:26.907605 23.51.123.27 192.168.10.111 TCcP 60 80 > 49736 [ACK] Seg=1 Ack=317 Win=30336 Len=0
22 18:13:26.911570 23.51.123.27 192.168.10.111 TCcP 1474 80 > 49736 [ACK] Seg=1 Ack=317 Win=30336 Len=1420 [TCP segment of a reassembled PDU]
2318 1801 23.51.123.27 192.168.10.111 ocsP 605 Response
24 10,1376 011045 107 160 14 114 25 £1 193 2 o 4 AO7TIE L 08 FAPVT €an_317 MrL_1077 Lin_GESEA 1 an_n

v Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Mar 11, 2019 18:13:25.865377000 Eastern Daylight Time
[Time shift for this packet: ©.000000000 seconds]
Epoch Time: 1552342405.865377000 seconds
[Time delta from previous captured frame: 0.000229000 seconds]
[Time delta from previous displayed frame: ©.000229000 seconds]
[Time since reference or first frame: 0.001138000 seconds]
Frame Number: 3
Frame Length: 66 bytes (528 bits)
Capture Length: 66 bytes (528 bits)
[Freme is marked: False]
[Freme is ignored: False]

Figure 4.1: Wireshark Screen

4.3 Converting pcap to csv using Wireshark and tshark

We needed to convert the pcap files to csv. To do this, we used Wireshark and tshark.
Wireshark is a network protocol analyzer that lets individuals view incoming and outgoing
packets on a network. Terminal Wireshark (tshark) is the command line version of Wireshark
we used to convert the pcap files to csv. Using Wireshark, we opened a few of the pcap files,
selected a few different packets, and manually went through all the packet details (see Figure
4.1) and captured each field name. To do this, we just selected the packet description field
(i.e. Epcoh Time) and copied its associated field name (i.e. frame.time_epoch). All the field
names we initially selected and viewed are shown in Table 3.1.

We first generated a large, singular dataset from the bulk data containing all the features,
then randomly selected a little over 3,700 rows to produce a subset dataset to gain a more
holistic view of the values each feature contained. After analyzing these features in the
subset, we decided to discard a handful of them. We discarded features for a few reasons.
One reason was the large dataset was too big to process with that many features and millions
of rows. The other reason is due to the nature of the features. Table 4.2 shows which features
were discarded and their associated reason for removal. The reasons for removal include:

e Lack of Variability: This feature produced little variability. For example,
frame.encap_type only contained the number “1” for each data point.

e Date/Time: This feature produced dates and/or times, constituting less-valuable
information. For example, frame.time displays the date and time the packet was cap-
tured.
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Table 4.2: Reason for Removing Features

Key Reason for Removal
frame.encap_type Lack of Variability
frame.time Date/Time
frame.time_epoch Continuous

frame.offset_shift

Lack of Variability

frame.time_delta

Continuous

frame.time_delta_displayed

Interchangeable (frame.time_delta)

frame.time_relative

Continuous

frame.number

Continuous

frame.cap_len

Interchangeable (frame.len)

frame.marked

Lack of Variability

frame.ignored

Lack of Variability

frame.coloring._rule.name N/A

eth.dst Categorical
eth.src Categorical
eth.type Lack of Variability
ip.dsfield Lack of Variability
ip.id Identification
ip.checksum Variability
ip.checksum.status Lack of Variability
tcp.stream Identification
tcp.seq Variability
tcp.seq_raw Variability
tcp.nxtseq Variability

tcp.ack Variability
tcp.ack_raw Variability
tcp.checksum Variability

tcp.checksum.status

Lack of Variability

tcp.urgent_pointer

Lack of Variability

udp.srcport Nulls
udp.dstport Nulls
udp.length Nulls
udp.checksum Nulls
udp.time_relative Nulls
udp.time_delta Nulls

Continuous: This feature produced continuous variables that would be difficult to
encode. An example would be frame.time_epoch.

Interchangeable: This feature had the same values as other features. For example,
frame.time_delta_displayed contained the same data as frame.time_delta.

Variability: This feature produced too much variability to recognize a pattern in the
data. For example, tcp.seq are randomly generated values identifying packet order.

N/A: The feature is not applicable. For example, frame.coloring rule.name is only
used to differentiate color-coded packets in Wireshark.

Identification: This feature produced the ID of a packet, which is unique to each
packet. An example would be ip.id.

Nulls: This feature produced too many null values to be considered worth keeping.
An example would be udp.checksum.
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Table 4.3: Wireshark Keys Kept

Key Description Type
frame.len Frame Length on The Wire Unsigned Integer (4 Bytes)
frame.protocols Protocols in Frame Character String
ip.len IP Total Length Unsigned Integer (2 Bytes)
ip.flags IP Flags Unsigned Integer (1 Byte)
ip.ttl Time to Live Unsigned Integer (1 Byte)
ip.proto IP Protocol Unsigned Integer (1 Byte)
ip.src Source Address IPv4 Address
ip.dst Destination Address IPv4 Address

tcp.sreport

Source Port

Unsigned Integer (2 Bytes)

tcp.dstport

Destination Port

Unsigned Integer (2 Bytes)

tep.len TCP Segment Length Unsigned Integer (4 Bytes)
tcp.hdr_len Header Length Unsigned Integer (1 Byte)
tcp.flags Flags Unsigned Integer (2 Bytes
tcp.window_size_value Window

tcp.window _size

Calculated Window Size

Unsigned Integer (4 Bytes

tcp.window _size_scalefactor

Window Size Scaling Factor

)
Unsigned Integer (2 Bytes)
)
)

Unsigned Integer (4 Bytes

Time Since First Frame in This TCP Stream
Time Since Previous Frame in This TCP Stream
Bytes in Flight

Bytes Sent Since Last PSH Flag

Time Offset
Time Offset
Unsigned Integer (4 Bytes)
Unsigned Integer (4 Bytes)

tcp.time_relative

tcp.time_delta
tcp.analysis.bytes_in_flight
tcp.analysis.push_bytes_in_flight

Once we figured out which features to remove, we then converted the individual pcaps
in the fine-grained dataset using the desired features shown in Table 4.3. We used tshark to
convert these fine-grained pcaps to csv. The code to do this is shown below.

import os
import csv
import shutil

# loop throught malware and normal directories
dirs = [’malware’, ’normal’]
# create a new directory to store the csv files
os.mkdir (’fine_grained_csv’)
# path
path = °.../fine-grained/raw_dataset’
# loop through files in directory
for file in os.listdir():
# select only pcap files
if file.endswith(".pcap"):
# tshark command to convert pcap to csv
command = f’tshark -r {file} -T fields -E header=y -E separator=,
-E quote=d -E occurrence=f -e frame.len -e frame.protocols -e ip.len -e
ip.flags -e ip.ttl -e ip.proto -e ip.src -e ip.dst -e tcp.srcport -e
tcp.dstport -e tcp.len -e tcp.hdr_len -e tcp.flags -e tcp.
window_size_value -e tcp.window_size -e tcp.window_size_scalefactor -e
tcp.time_relative -e tcp.time_delta -e tcp.analysis.bytes_in_flight -e
tcp.analysis.push_bytes_sent > {file[:-5]}.csv’
# run the tshark command
os.system(command)
# move newly created csv to new directory
shutil .move(f’{file[:-5]}.csv’, f’{path}/fine_grained_csv’)
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The csv files produced carried the same naming conventions as the pcap files. For exam-
ple, mirai_mal CC_lock.pcap became mirai mal CC_lock.csv. Now that we had the features
we wanted, we then added a few additional features to use as labels.

4.4 Building the Dataset

The main thing we wanted to be able to predict was whether traffic was malicious or not.
If we had time, we also wanted to predict the type of botnet malware and the device type.
While we were not able to complete these last two predictions, we still created labels for
all of them. The first feature we modified was frame.protocols. These were long character
strings, so we split up the string and kept the last element. For example, if the data point
was “eth:ethertype:ip:tcp” we manipulated it such that only “tcp” was kept.
def split_protocol(proto):

proto = proto.split(’:’)

proto = proto[len(proto)-1]

return protol[:-1]

After splitting the protocol, we then created various labels. The first label we created
was used to display whether a packet was malicious or not. Based on the file name, we
created a feature called is_malware, and labeled it “1” if the file name contained “mal”, and
“0” if it contained “leg”.
def is_malware(file_name):

n = file_name.split(’_’)
if n[1] == ’mal’:
return 1

else:
return O

After creating is_malware, we then created a label differentiating the botnet’s action. To
do this, we first determined whether the file was malicious or legitimate. Then, based on the
file name, we labeled it as “spread” for propagation traffic, and “cc” for C&C communication
traffic. Note that all the Torii files only housed propagation data given the researchers did
not want to risk communication with Torii’s real C&C server.

def define_phase(file_name):

n = file_name.split(’_’)
if n[1] == ’mal’:
if n[0] == ’torii’:
return ’spread’
elif n[2] == ’spread’:
return ’spread’
elif n[2] == ’CC’:
return ’cc’
else:

return ’leg’

Once we created a feature for the botnet phase, we then created a feature for the device
type used. The types of devices included a fan, switch, lock, light, and two raspberry pis.
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| def define_device(file_name):

2

3

Table 4.4: Number of Row for Each Dataset

Modified Dataset (Individualized)

Number of Rows

Device Dataset

Number of Rows

bashlite_mal _CC_fan_mod.csv 188,853

bashlite_mal _CC_light_mod.csv 167,285 mal_lock_data.csv 1,068,829
bashlite_mal _CC_lock_mod.csv 157,141

bashlite_mal _CC_switch_mod.csv 114,223

bashlite_mal_spread_fan_mod.csv 1,032,604 mal_fan_data.csv 1,775,401
bashlite_mal_spread_light_mod.csv 900,135

bashlite_mal_spread_lock_mod.csv 761,799

bashlite_mal_spread_switch_mod.csv 589,858 mal_light_data.csv 1,232,180
mirai_mal_CC_fan_mod.csv 296,643

mirai_mal_CC_light_mod.csv 93,177

mirai_mal_CC_lock_mod.csv 56,785 mal_switch_data.csv | 1,110,148
mirai_mal_CC_switch_mod.csv 106,023

mirai_mal_spread_fan_mod.csv 119,828

mirai_mal_spread_light_mod.csv 71,236 mal_raspl_data.csv 46,223
mirai_mal_spread_lock_-mod.csv 92,950

mirai_mal_spread_switch_mod.csv 162,634

torii_mal_fan_mod.csv 137,477 mal_rasp2_data.csv 2,639
torii-mal_light_mod.csv 351

torii_mal_lock_mod.csv 158

torii_mal_raspberryl_mod.csv 46,223 leg_lock_data.csv 12,847,387
torii-mal_raspberry2_mod.csv 2,639

torii_mal_switch_mod.csv 137,414

bashlite_leg_fan_mod.csv 1,079,670 leg_fan_data.csv 1,449,712
bashlite_leg_light_mod.csv 976,966

bashlite_leg_lock_mod.csv 12,572,305

bashlite_leg_switch_mod.csv 1,067,072 leg_light_data.csv 1,262,686
mirai_leg_fan_mod.csv 293,099

mirai_leg_light_mod.csv 263,845

mirai_leg_lock_mod.csv 264,179 leg_switch_data.csv 1,319,527
mirai_leg_switch_-mod.csv 219,556

torii_leg_fan_mod.csv 76,945

torii_leg_light_mod.csv 21,877 leg_raspl_data.csv 129,551
torii_leg_lock_-mod.csv 10,905

torii_leg_raspberryl_mod.csv 129,551

torii_leg_raspberry2_mod.csv 4,714 leg_rasp2_data.csv 4,714
torii_leg_switch_mod.csv 32,901

n = file_name.split(’_")
return n[-1][:-4]

an appropriate size to process efficiently.
preprocessing.
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After creating these additional labels, we transformed each fine-grained csv and added
“mod” in the name. For example, mirai_mal CC_lock.csv became
mirai_mal CC_lock_mod.csv. Table 4.4 displays the number of rows for each of these modified
datasets. Once the modified datasets were generated with the additional labels, we then
combined these files based on device type, but still differentiated between malicious and
legitimate traffic. Table 4.4 also displays the number of rows for the device-specified datasets.
After combining the datasets by device and traffic type, we then selected 2,000 random rows
from each dataset and generated a singular dataset containing a total of 24,000 rows. By
doing all this, we tried to keep an even amount of data as well as ensure the dataset was
We then proceeded to do some minimal data
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Table 4.5: Number of Nulls and Unique Values for Each Feature

Attribute # of NaN | # of Unique Values
frame_len 0 358
frame_protocols 0 13
ip_len 0 360
ip_flags 0 2
ip-ttl 0 19
ip-proto 0 5
ip_src 0 97
ip-dst 0 5024
tcp-srcport 207 5878
tcp-_dstport 207 2141
tcp_len 355 337
tcp-hdr_len 354 7
tcp_flags 354 8
tcp-window _size_value 354 901
tcp-window _size 354 899
tcp-window _size_scalefactor 6393 6
tcp-time_relative 354 20942
tcp-time_delta 354 9577
tcp-analysis_bytes_in_flight 14782 1223
tcp-analysis_push_bytes_sent | 14782 1339
is_malware 0 2
malware_type 0 3
device 0 6
phase 0 3

4.5 Preprocessing: Dropping More Nulls

Once we had a single dataset, we wanted to verify again how many null values we had. Using
the code below, we produced statistics similar to the ones shown in Table 4.5.

from tabulate import tabulate

null_val = []
unique_val =
tabs = []

(]

for h in headers:

null_val.append(datal[h].isnull () .sum())

unique_val.append(datal[h].nunique())

for i in range(len(headers)):

tabs.append ([headers[i],

5 print (tabulate (tabs,

i

[1

null_columns =

tcp_len’,

null_vall[il,

headers=[’Attribute’,
tablefmt=’orgtbl’))

Drop Columns
>tcp_hdr_len’,

’tcp_window_size_value’,

’tcp_window_size_scalefactor’,

’tcp_time_relative’,

'# of NaN’,

>tcp_flags’,
’tcp_window_size’,

’tcp_time_delta’,
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Display Count of NaN for Columns
data.columns.values

unique_val[ill)

># of Unique Values

’tcp_window_size’,
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>tcp_analysis_bytes_in_flight’,
’tcp_analysis_push_bytes_sent’]

data.drop(null_columns, axis=1, inplace=True)

f====================== Drop Remaining NaN
data.dropna(inplace=True)

We removed all of the features containing null values since it would be difficult to fill
this data in. We then performed a final dropna() to get rid of any remaining rows with
null values. We ended up with a mildly unbalanced dataset containing 23,793 samples in
total out of the original 24,000. Out of the 23,793 samples, 11,942 were labeled as malware,
and 11,851 were labeled as benign. While we tried to keep things as balanced as possible,
we didn’t stress too much about this because we inevitably would have to shuffle the data
and distribute it randomly amongst the clients. Each client, therefore, will more likely have
unbalanced data when training their local model. In the real world, it is also unlikely each
client will be processing balanced network traffic. We also did not spend time analyzing
outliers during preprocessing given the nature of our data and how an intrusion detection
system operates.
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Chapter 5

Experiment Setup of Cross-Device FL
IDS

5.1 Experimental Design Setup

Figure 5.1 outlines our final experimental design setup. We initially tried to implement our
model using Google’s TFF but had to switch gears and implement the model using [41]. We
repeated this process for our poisoning attack with minimal changes discussed in Section
5.2.

5.1.1 Attempted Strategy Using TFF

To assist with federated learning research, Google has come up with an open-sourced frame-
work called TensorFlow Federated (TFF). It is used in conjunction with TensorFlow (TF)
and Python and is compatible with Keras to upload pre-built models. TFF is offered as a
Federated Learning API, which allows developers to use existing TF models, and a Federated
Core, which allows developers to create novel federated learning solutions.

Originally, we tried to analyze our data using the API. This, however, proved difficult
because working with tensors and reshaping data added extra levels of complexity, converting
TF methods to TFF functions was complicated, and little documentation exists on how to
actually use the API. For example, most of the tutorials by google use a pre-existing TFF
formatted dataset, but the tutorials do not discuss how this dataset is different from the
original (e.g MNIST vs tff.simulation.datasets.emnist for image classification). As far as
using our own data, there were minimal articles discussing how to manipulate and reshape
the data, but even then there were slight discrepancies (i.e. using a dictionary vs an ordered
dictionary) between them and the google tutorials. TFF also only works with certain versions
of TF. After extensive work, trial, and error, we were able to eventually produce some output,
exhibiting the same fluctuations discussed in Section 6.1 but with similar accuracy values.
The metrics produced, however, were only accuracy and loss. We could not see precision,
recall, and f1 scores, and the only place where these metrics were defined was in the Keras
model using the metric tf keras.metrics.BinaryAccuracy(). The way the API is set up and the
data is shaped and modified, we could not figure out how to call standard python functions
such as precision_score(). As a result, we changed the metrics=[tf.keras.metrics.Accuracy(),
tf keras.metrics.FalseNegatives, tf keras.metrics.FalsePositives| to get a more holistic view
of the model. Changing the metrics without adjusting anything else, however, resulted in
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Figure 5.1: Experiment Overview

worst model performance. For example, in one experiment the model would produce 50%,
and in one experiment the model would produce 3%. The model also never learned, meaning
the model would guess one class for everything, resulting in one metric being zero, and one
metric being however much data was processed. As a result, due to our inability to 1)
get the model to produce metrics other than accuracy and loss, 2) understand why model
performance was so poorly affected due to a change in metric outputs, 3) TFF being a black
box method to us, and 4) time constraints, we had to quickly switch gears using another
method of implementation. Moving forward, we abandoned the TFF API and proceeded to
reference code from [41] used in a recent IEEE federated learning publication [42].

5.1.2 Finalized Strategy of Experiment Setup

After creating the dataset mentioned in Section 4 and removing all the nulls, we were left
with the features displayed in Table 5.1. This dataset contained 11,942 malware samples
and 11,851 benign samples, totaling 23,793 samples out of the original 24,000 before using
dropna(). This contains an imbalance of 91 samples in favor of malware. We decided not
to completely balance the data because the data would be shuffled before being distributed
amongst the clients anyway. Out of the features shown in Table 5.1, the ones highlighted
in green are selected as the predictors to our label is_malware given they are numerical.
After defining our inputs, we separated our predictors and label, scaled the data using
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Table 5.1: Final Selected Features

Feature Type

il
6l
il

ip_src object
ip_dst object
is_malware int64

malware_type object
device object
phase object

MinMaxScaler(), and split the training set using a test_size = 0.10 and a seed of 123 to
enforce consistency throughout the experiments.

from sklearn import preprocessing

inputx = [’frame_len’, ’ip_len’, ’ip_ttl’, ’ip_proto’, ’tcp_srcport’, ’
tcp_dstport’]

X_full = data.loc[:, inputx].values

Y_full = datal[’is_malware’].values

scaler = preprocessing.MinMaxScaler ()
X_full = scaler.fit_transform(X_full)

xTrain, xTest, yTrain, yTest = train_test_split(X_full, Y_full, test_size
=0.10, random_state=123)

We saved 10% of the data for testing, resulting in a total of 2,380 samples. Out of the
2,380 testing samples, 1,186 of them are benign, and 1,194 are malicious (resulting in an
imbalance of 8). This meant that 21,413 samples were used for training. After splitting, we
converted the integer class vector is_malware to a binary class matrix using to_categorical().
It is debatable whether this was necessary for simple binary classification, but we imple-
mented it because if we had time we wanted to be able to predict other labels such as botnet
cycle phase and malware type. Inevitably, we did not have time to make these additional
predictions. After converting the labels to a matrix, we defined the metrics we wanted to
track (i.e. accuracy, precision, recall, and f1) using their associated built-in python functions.
Then, using a batch size of 64, 200 epochs, ReLu as the activation function (except for the
last layer, which uses SoftMax), and Adam as the optimizer, we build the simple neural
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network model shown below:

data = pd.read_csv(’mod_combined_2000_processed.csv’)
verbose, epochs, batch_size = 0, 200, 64

3 activationFun=’relu’

optimizerName=’Adam’

5 def createDeepModel ():

model = Sequential ()
model .add (Dense (6, input_dim=X_full.shape[l], activation=activationFun
))
model .add (Dropout (0.4))
model .add (Dense (4, activation=activationFun))
model .add (Dropout (0.4))
model .add (Dense (outputClasses, activation=’softmax’))
model.compile(loss=’binary_crossentropy’,
optimizer=optimizerName,
metrics=[’accuracy’])

return model

Once we defined our model, we initialed it using deepModel=createDeepModel(), set the
desired number of iterations to 50, and the number of clients to four. We used 50 iterations
because there were some experiments where 30 iterations were not enough for the model
output to stabilize. We tested a handful of clients, but to keep things simple and time
efficient, we stuck with four of them.

We then had separate functions to 1) update the server model, 2) update the client model,
and 3) train the initial server model. Once these methods were defined, we split the data
among the clients using intervals (i.e. client one would contain rows 1 through N out of the
training data). Since the data was already shuffled during the train/test split, there was no
need to shuffle again. We then loaded the model on each of the clients by training the server
model with 20% of the data and distributing the server’s deep model amongst the clients.
Then, for each iteration, each client model was compiled using binary_crossentropy as the
loss function, Adam as the optimizer, and accuracy as the metric. Once the client model
was updated, we stored the client model weights in a list, then sent them to the server where
they were summed and averaged. Once the server updated its model using the averaged
values, the model was saved and sent to the clients, and the process repeated.

5.2 Experimental Design Setup (Poisoning Attack)

The setup for the label-flipping was very similar to that of the previous section. This label-
flipping is meant to emulate a poisoning attack. Poisoning attacks are when malicious entities
purposely inject bad data during the model’s training to produce a less effective model. We
tried to be sophisticated with our approach to label-flipping. After splitting the data into
train and test sets, we looked up the most popular port for the malware data, and found that
Telnet (port 23) was at the top of the list (see Figure 5.2. Telecommunications and Networks
(Telnet) is an application protocol that allows users to interact with remote systems. As
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briefly mentioned in Section 2.1.4, Torii takes advantage of devices exposed to Telnet. Most
secure devices should have this port closed because credentials submitted through telnet are
not encrypted, leaving clients vulnerable to data leaks.

Table 5.2: Top Five Popular Ports Amongst Malicious Data

Port Number | MinMax Equivalent | Description | Number of Occurrences
23 0.000361 Telnet 1441
443 0.007246 HTTPS 1198
32892 0.539223 Unassigned 607
80 0.001295 HTTP 606
60922 0.998754 Unassigned 342

Out of the 23,793 rows of data we had, 1,441 of them (roughly 6%) had a source port
equal to 23. This means that rows with a source port of 23 made up 12% of the malicious
data. When the data is split amongst the clients, the first client gets the first 4,282 rows of
data. In order to keep the attack consolidated within the first client, we looped through the
first 4,282 rows of training data and changed all the labels with a source port equal to 23
from 1 to 0. This was also performed after scaling, so instead of checking to see if the port
was equal to 23, we checked to see if it was equal to its scaled equivalent of 0.000361 (see
code below):

count = 0
# loop through dataframe

3 for i, row in flip.iterrows():

# if the src port is 23, change label to O
if round(row[’tcp_srcport’], 6) == 0.000361:
flip.at[i, ’is_malware’] = 0
count += 1
# stop at the end of the first client
if i > 4282:
break

Pre-label-flipping, the training data had 10,748 instances of malicious data and 10,665
instances of benign data. The code above resulted in 250 flipped labels from 1 to 0 for the
first client. So after label flipping, the first client contained 250 incorrect labels, and the total
dataset count of “benign” samples went up to 10,915. Outside of this, everything remained
the same as far as the experiment design.
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Chapter 6
Validation

In this chapter, we present our results and discuss the impact of these results.

6.1 Results

We ran our model using various hyperparameters and achieved varying results. The hyper-
parameters adjusted are the following:

e Number of Clients: The number of individual clients. For simulation purposes, the
number of subsets of the data being trained on our model.

e Number of Epochs: The number of times to pass the entire dataset forward and
backward through the network.

e Learning Rate: A parameter that determines the step size at each iteration.

e Number of Iterations: The number of cycles to run the federated learning model.

Using these hyperparameters, we tracked the accuracy, precision, recall, f1 score, and loss
of our model. Accuracy measures the number of correctly identified cases and is often used
when classes share equal importance or distribution [43]. Precision describes how accurate
the model is out of the predicted positives, making it a good measure when the cost of false
positives is high [44]. In our case, a false positive would be benign traffic being classified as
botnet traffic. Recall describes the number of actual positives captured, making it a good
measure when the cost of false negatives is high. In our case, a false negative would result in
botnet traffic being classified as benign traffic. For our research, the cost of false negatives
is higher than that of false positives, so we pay close attention to recall and precision (more
so recall) over accuracy. The fl score is used when seeking a balance between precision and
recall in the presence of an uneven class distribution [44]. It places an emphasis on the
importance of false positives and false negatives, whereas accuracy places more importance
on true positives and true negatives [43]. As a result, we are also more interested in the f1
scores produced by our model than accuracy. These metrics are further broken down into
their mathematical formulas below:

o Accuracy = TP+ 1N
TP+TN+FP+ FN
e Precision = L
TP+ FP
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The following subsections discuss the results obtained using these hyperparameters and
metrics.

6.1.1 Hyperparameter: Epochs (200 vs 400)

Using four clients, a batch size of 64, 30 iterations, and a learning rate of 0.01, we found a
negligible difference between 200 and 400 epochs. At the end of the last iteration of training,
200 epochs resulted in an accuracy of 70%, precision of 77%, recall of 70%, and f1 score of
67%, while 400 epochs resulted in an accuracy of 69%, precision of 74%, recall of 69%, and
an f1 score of 68% (see Figure 6.1). After running our test data through the model, 200
epochs resulted in an accuracy of 78% and a loss of 54%, while 400 epochs resulted in an
accuracy of 69% and a loss of 56% (See Figure 6.2).

We then tried comparing 200 vs 400 epochs using a smaller learning rate of 0.001. At
the end of the last iteration of training, 200 epochs resulted in an accuracy of 91%, precision
of 92%, recall of 91%, and f1 score of 90%, while 400 epochs resulted in an accuracy of 69%,
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precision of 77%, recall of 69%, and an f1 score of 67% (see Figure 6.3). After running our
test data through the model, 200 epochs resulted in an accuracy of 67% and a loss of 57%,
while 400 epochs resulted in an accuracy of 69% and a loss of 62% (see Figure 6.4).

While 400 epochs have a slightly higher accuracy during testing for a learning rate of
0.001, it under-performs in almost all other regards compared to 200 epochs. At a learning
rate of 0.001, 200 epochs also seem to fluctuate more for 30 iterations, suggesting we may
need to increase this parameter. Since there was no significant improvement in increasing
the epoch size past 200 for either learning rate, all further testing was performed using 200
epochs to improve time efficiency.

6.1.2 Model Performance After Ten Runs
Training

Using four clients, a batch size of 64, 50 iterations, and a learning rate of 0.001, we ran our
model ten times to account for some randomness and gain an understanding of the model’s
overall performance. The scores produced by each experiment are shown in Table 6.1.
Figure 6.5 displays the progression of accuracy through 50 iterations for the ten experi-
ments. Based on the graph and Table 6.1, E3 and E10 produce accuracies over 80%, while
E7 and E9 produce accuracies below 60%. E1, E2, and E4 produce accuracies between 60%-
70%, and E5, E6, and E8 produce accuracies between 70%-80%. When looking at the graph,
E4, E7, and E9 all exhibit a sharp decrease in accuracy prior to the 20th iteration and stay
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Table 6.1: Scores Across 10 Experiments

Training Testing

Experiment | Accuracy | Precision | Recall | F1-Score | Accuracy | Loss
1 67% 79% 67% 63% 67% 58%

2 66% 79% 66% 62% 66% 63%

3 82% 82% 82% 82% 70% 61%

4 65% 74% 65% 62% 64% 60%

5 78% 78% 78% 78% 78% 49%

6 70% 1% 70% 69% 70% 57%

7 54% 76% 54% 43% 64% 63%

8 74% 79% 74% 2% 73% 53%

9 54% 76% 54% 43% 54% 66%

10 81% 81% 81% 81% 81% 51%
Average 69% 78% 69% 66% 69% 58%

stagnant on out. El1, E6, ES, and E10 stay relatively consistent throughout the iterations,
and E2, E3, and E5 show an increase by the end of the iterations.

Figure 6.6 displays the progression of precision through 50 iterations for the 10 experi-
ments. Based on the graph and Table 6.1, E3 and E10 produce precision values over 80%,
while all other experiments produce precision values between 70%-80%. When looking at
the graph, E4, E7, and E9 all exhibit a sharp decrease in precision prior to the 20th iteration
and remain stagnant on out. E6, E8, and E10 stay relatively consistent throughout the
iterations, and E1, E2, and E5 display a moderate increase in precision. E3 fluctuates, then
stops close to where it started during the first iteration.

The graphs for the recall and fl-scores show that these values produce the same shape
as the accuracy for each experiment in Figure 6.5, with recall producing the same scores as
accuracy by the end of the 50th iteration, and the f1 score being slightly less than accuracy.

Overall, throughout the ten iterations, our model produces an average accuracy of 69%,
precision of 78%, recall of 69%, and fl1 score of 66%. We see less fluctuation in precision
than accuracy, and our precision values are higher than our accuracy values. Our recall is
the same as our accuracy, and our fl score is less than accuracy, precision, and recall. This
fluctuation is likely due to randomness. Due to time constraints, we were not able to perform
k-fold validation for our model. In the future, however, we believe using k-fold validation
may further validate our results and reduce this random fluctuation.

Testing

After running the testing set through our model, Figure 6.7 shows that 60% of the experi-
ments fall between 60%-70% accuracy (E1, E2, E3, E4, E6, and E7). 20% of the experiments
fall between 70%-80% accuracy (E5 and E8), and only 10% of the experiments achieved over
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Figure 6.5: Accuracy Produced Through 10 Repetitions of Training

80% accuracy (E10). The remaining 10% (E9) fell between 50%-60%.

Figure 6.7 also shows that while we have relatively high loss values, 90% of the experi-
ments (with the exception of E9) have a loss value less than that of its associated accuracy.
Out of the 60% of experiments that fall between 60%-70% accuracy, half of them have a loss
value within the same range, and half have a loss value less than 60%. We see the greatest
disparity between accuracy and loss E5 and E10 with a difference of 29 and 30 respectively.

On average, we achieve an accuracy of 69% and a loss of 58%. Meaning on average, we
achieve the same accuracy during testing as we did during training (see Table 6.1).

6.1.3 Model Performance After Ten Runs (Poisoning Attack)

To label-flip, we took all of the rows in the first client with a source port equal to 23 and
changed the label from 1 to 0 (see Section 5.2). Using one corrupted client, three clean clients,
a batch size of 64, 50 iterations, and a learning rate of 0.001, we ran our model ten times to
account for some randomness and gain an understanding of the model’s performance. The
scores produced by each experiment are shown in Table 6.2.
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Table 6.2: Scores Across 10 Experiments (Poisoning Attack)

Training Testing

Experiment | Accuracy | Precision | Recall | F1-Score | Accuracy | Loss
1 73% 74% 73% 2% 89% 42%

2 69% 7% 69% 67% 69% 62%

3 53% 76% 53% 40% 53% 66%

4 73% 74% 73% 72% 73% 52%

5 69% 2% 69% 68% 69% 64%

6 87% 88% 87% 87% 86% 47%

7 73% 74% 73% 2% 73% 58%

8 92% 93% 92% 92% 65% 60%

9 69% 76% 69% 67% 72% 60%

10 56% 76% 56% 45% 54% 67%
Average T1% 78% 71% 68% 70% 58%

Training

Figure 6.8 displays the progression of accuracy through 50 iterations for the 10 experiments.
Based on the graph and Table 6.2, E6 and E8 produce accuracies over 80% and 90% respec-
tively, while E3 and E10 produce accuracies below 60%. E2, E5, and E9 produce accuracies
between 60%-70%, and E1, E4, and E7 produce accuracies between 70%-80%. When look-
ing at the graph, E1, E2, E5, and E10 produce a noticeable decrease in accuracy prior to
the 20th iteration. E4, and E8 experience rampant fluctuation throughout the iterations,
While E3 and E9 increase and then decrease again in a less chaotic manner. E6 and E7 stay
relatively consistent throughout the iterations. Unlike the scores produced in Section 6.1.2,
while slightly higher accuracies seemed to be achieved, there is noticeably more fluctuation
throughout the learning process for the model.

Figure 6.9 displays the progression of precision through the 50 iterations for the 10
experiments. Based on the graph and Table 6.2, E6 and E8 produce precision values over
80% and 90% respectively, while all other experiments produce precision values between
70%-80%. Looking at the graph, E1, E2, E5, E9, and E10 all experience a decrease in
precision throughout the iterations. E3 and ES8 experience a minor increase in precision
while fluctuating more than the other experiments. E4, E6, and E7 experience little to no
fluctuation in precision values throughout the iterations.

The recall and f1 scores produce the same shape as the accuracy for each experiment
in Figure 6.8, with recall producing the same scores as accuracy by the end of the 50th
iteration, and the fl score being slightly less than accuracy (with the exception of E6 and
E8, which produce the same as accuracy and recall).

Overall, throughout the 10 iterations, our model produces an average accuracy of 71%,
precision of 78%, recall of 71%, and f1 score of 68%. Compared to our results in Section
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Figure 6.8: Accuracy Produced Through 10 Repetitions of Training (Poisoning Attack)

6.1.2, label-flipping achieves higher accuracy, the same precision, higher recall, and a higher
f1 score. We see less fluctuation in precision than accuracy, and our precision values are
higher than our accuracy values. Our recall is the same as our accuracy, and our f1 score is
mostly less than all accuracy, precision, and recall. While this is strange and unexpected,
Section 6.2 goes into detail about why we might be achieving these results.

Testing

After running the testing set through our model, Figure 6.10 shows 30% of the experiments
(E2, E5, and E8) produce an accuracy between 60%-70%. 30% of the experiments fall
between 70%-80% accuracy (E4, E7, and E9), and 20% of the experiments achieved over
80% accuracy (E1 and E6). The remaining 20% (E3 and E10) fell between 50% and 60%.
Compared to testing results in Section 6.1.2, label-flipping seems to produce more sporadic
results given 20% as opposed to 10% of the experiments produce accuracies over 80%, while
20%, as opposed to 10%, produce accuracies below 60%.

Figure 6.10 also shows that while we have relatively high loss values, 80% of the exper-
iments (excluding E3 and E10) have a loss value less than that of its associated accuracy.
Most of the loss values fall between 60%-70% (E2, E3, E5, E8, E9, and E10). The other
40% of the experiments (E1, E4, E6, and E7) produce loss values below 60%. 20% of the
experiments (E3 and E10) produce loss values higher than their associated accuracy, which
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is twice as much as the experiments from Section 6.1.2. Last, we see the greatest disparity
between accuracy and loss for E1 and E6 with a difference of 47 and 39 respectively.

On average, we achieve an accuracy of 70% and a loss of 58%. Meaning on average, we
achieve a slightly lower accuracy during testing than we did during training (see Table 6.2).
Compared to Section 6.1.2, we have slightly higher accuracy and the same loss.

6.2 Discussion

Our federated learning model produced on average an accuracy of 69%, precision of 78%,
recall of 69%, and f1 score of 66%. After label-flipping for the first client, our model produced
on average an accuracy of 71%, precision of 78%, recall of 71%, and f1 score of 68%. Our
model post-label-flipping produces a higher accuracy, but as mentioned in Section 6.1, we
care more about our recall, precision, and f1 score given the cost of false negatives and false
positives is higher than true positives and true negatives. Both models achieve the same
precision of 78%, while our model post-label-flipping produces slightly higher recall and f1
scores. This means on average, both models are predicting around the same amount of
benign traffic as malicious, but our model post-label-flip predicts less malicious traffic as
benign than our model pre-label-flip.

While our precision scores are favorable, our recall and f1 scores are cause for concern
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Figure 6.10: Accuracy and Loss Through 10 Repetitions of Testing (Poisoning Attack)

given organizations and individuals will suffer more from malicious traffic being classified as
benign than benign traffic being classified as malicious. We also anticipated that our metric
results would decrease after label-flipping, but we saw an increase in accuracy, precision, and
f1 instead. This could be due to one of three things: 1) Since we only label flipped for the
first client and only had four clients in total, a higher accuracy could be produced by the first
client due to class imbalance, bringing the average accuracy up in the shared model. This
may have less of an impact on a larger number of clients. 2) The model is able to withstand
poisoning attacks efficiently. 3) There is something wrong with our model. It is more likely
that reasons 1 or 3 are the culprit.

While producing a slightly better metric score, Figure 6.11 shows, however, that the
model post-label-flip fluctuates more than the model pre-label-flip. 60% of our model results
produce an accuracy between 60%-70%, but only 30% of the results produced after the
attack falls within this same range. Post attack, twice the amount of results fall below 60%,
and twice the amount fall above 80%. This shows that while the overall results may be
higher for label-flipping, a closer look at the model reveals higher fluctuation, making model
performance a luck of the draw.

While the results are not as optimal as we would like, [25] mentions how a common
challenge with federated learning is often the trade-off between accuracy, privacy, and com-
munication. While it is not too surprising that our model produces a lower accuracy than
many published centralized models, the metric results are not optimal enough to consider
this federated learning model a sufficient predictor of botnet traffic. Low results could be
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Figure 6.11: Difference in Model Performances

caused by a few different factors: the number of neural network layers and their number of
inputs and outputs, the features are chosen, the randomness in selected training data, or
data imbalance among the clients. In a real-world federated learning scenario though, many
of these are things we would not be able to control. The more computationally intensive the
neural network, the more likely IoT devices will drop off due to computational power and
battery life. To conserve privacy, the model will not be able to see the raw data held on
each device, so class balancing is difficult to achieve and excessive data pre-processing may
also be difficult or impossible depending on the device. Because we are looking at botnet
propagation and C&C communication, the traffic studied is able to blend in easier than if
a DDoS attack were taking place. Many of the published federated learning models that
achieve high accuracies are fed data consisting of the overall statistics of the network traffic
rather than the individual packets themselves. Many of these papers also use attack data,
which could be easier to identify than propagation data (i.e. time delta and time relative
since first or previous may be shorter during an attack than C&C communication). If we
wish to use federated learning as a privacy-protecting, more intelligent form of intrusion
detection and prevention pre-attack, further research on the subject is required.
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Chapter 7

Conclusion

We proposed an intrusion detection system that utilizes federated learning to preserve data
privacy amongst devices. We analyze raw packet data from legitimate botnet traffic. Sam-
pling packets from the propagation and C&C communication phase, we propose an online
model to differentiate between malicious and benign traffic on a per-packet basis without
allowing the clients to share raw network data. We also examined whether poisoning attacks
have an impact on model performance. Using MedBloT, we converted the fine-grained pcap
files to csv format using Wireshark and tshark. We then dropped nulls, scaled, and split
our data into training and testing sets. The training data was distributed amongst four
clients using a batch size of 64, 200 epochs, and 50 iterations. After running our model 10
times before and after label-flipping, we found that the performance is relatively similar with
more fluctuation among the poisoned model throughout the trials. While we believe further
improvement could be made to our model, we believe an intrusion detection system using
federated learning is a positive step forward to protecting our devices and data privacy.

7.1 Limitations and Drawbacks

To our knowledge, federated learning models only exist in simulated environments and are
not utilized publicly in the real world. There are a few reasons for this. One is that these
models have to be tailored to fit the data, rather than tailoring the data to fit the model
like most centralized approaches. In regards to network data, the reality is many packets
could have missing values, outliers, and an unbalanced distribution of malware and normal
traffic depending on the security of the system and network. Devices, especially [oT devices,
also have different levels of computational power and battery life. This means that when
randomly selecting devices, the central server will have to be able to withstand devices
dropping randomly due to network bandwidth, battery power, going on or offline, and so on.
There is also the issue of how many devices to randomly select for training, and making sure
that there isn’t a bias as to which devices to select. This method of intrusion detection does
require more research regarding the kinds of models devices are able to process and the type
of data to analyze from the packets. Then as zero-day malware (malware that hasn’t been
seen before) is researched and discovered, the model would have to be trained or altered to
process new parameters and information much like how intrusion detection systems must
be maintained to keep up with new malware. We initiated the process of trying to detect
discrepancies on networks using a federated learning-based intrusion detection system, but
more has to be done for this idea to be used in real-world applications.
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7.2 Future Work

We tried to track botnet propagation on a packet-by-packet basis. This is a difficult task
given botnet traffic can easily blend in with regular traffic during propagation and C&C
communication pre-attack. This will only become more difficult as newer variants continue to
incorporate encryption to evade attacks. This is a research area that requires more attention
as we try to prevent attacks and conserve data privacy. There are three things that should
be done in the future to potentially produce a better federated learning model. First, more
time should be spent on an in-depth analysis of feature selection. Packets contain a lot of
data. For ease of training, we used numerical, non-continuous data. It would be interesting
to see more features included in pre-processing, such as categorical data and continuous
data. Feature selection should also be used to determine feature correlation and impact, and
features should be properly encoded based on their type. It is important to find a balance
between feature selection and data pre-processing and what devices such as smartphones
and [oT can handle computationally though. For federated learning, the model needs to be
tailored to the data and clients it processes, rather than tailoring the data to the model.
Second, k-fold cross-validation could be tested to see how it impacts model fluctuation.
Third, different poising attacks should be used until model performance is visibly decreased.
During this research, we saw that some examples of label-flipping decreased accuracy, while
other examples increased accuracy. This may be because the label-flipping attack model we
have chosen is not perfect. In the future, more sophisticated attacks should be tested to
decrease model performance for every test run. This will help researchers understand what
types of tailored attacks hackers might use and help them build their model to appropriately
defend against such attacks.
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