
EMBEDDING-BASED DETECTION OF AI-GENERATED IMAGES: A VECTOR
SIMILARITY AND BLOCKCHAIN-BACKED APPROACH

Jitendra Sharma

A THESIS REPORT

Presented to the Faculty of Miami University in partial
fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science & Software Engineering

The Graduate School
Miami University

Oxford, Ohio

2025

Dr. Suman Bhunia, Advisor
Dr. Arthur Carvalho, Reader
Dr. Daniela Inclezan, Reader

©

Jitendra Sharma

2025

ABSTRACT

The rapid advancement of generative AI and large language models (LLMs) has revolution-
ized various domains by enabling the creation of highly realistic and contextually relevant
digital content. Verifying the integrity and origin of digital data to ensure it remains un-
altered and genuine is crucial to maintaining trust and legality in digital media, a process
known as digital content authentication. LLMs, such as ChatGPT and Stable Diffusion tech-
niques, can produce images that are often indistinguishable from those created by humans,
posing challenges to digital content authentication. This thesis addresses the critical need
for an effective AI-generated image detection mechanism that can overcome both technical
and ethical challenges. We present EmbedAIDetect, a blockchain-based AI image detection
system that utilizes image embedding techniques and vector similarity search. We have
compared and evaluated different embedding methods that are generalizable and resistant
to significant image manipulations. The results of our experiments demonstrate an average
accuracy of 95.67% in image classification using embedding techniques. The thesis presents a
novel system that accepts image uploads from users, extracts their vector embeddings using
a pre-trained model, compares them against a database of known embeddings, and verifies
their integrity through hash checks on the blockchain network.

iii

Table of Contents

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Open Challenges . 2
1.3 Proposed System . 2

1.3.1 Contributions . 3
1.3.2 Results . 3

2 Background & Related Work 4
2.1 Neural Networks . 4

2.1.1 Deep Neural Networks . 5
2.1.2 Recurrent Neural Networks . 5
2.1.3 Convolutional Neural Networks (CNNs) 6
2.1.4 Transformers . 6

2.2 Generative AI . 8
2.2.1 AI-Generated Images . 9

2.3 Image Generation Models . 10
2.3.1 Generative Adversarial Networks (GANs) 11
2.3.2 Autoregressive Models . 12
2.3.3 Neural Style Transfer (NST) . 13
2.3.4 Diffusion Models (DMs) . 14

2.4 Image Analysis Techniques . 18
2.4.1 Embedding . 18
2.4.2 Embedding Models . 20
2.4.3 Image Similarity . 22
2.4.4 Vector Database . 23

2.5 Blockchain Technology . 24
2.5.1 Ethereum Network . 24
2.5.2 Smart Contracts . 25

iv

2.5.3 Programming Languages . 26
2.5.4 Gas Fees . 27
2.5.5 Decentralized Applications (DApps) 27
2.5.6 Crypto Wallets . 27
2.5.7 Limitations of Blockchain Technology 28

2.6 Related Work . 29

3 EmbedAIDetect System Design 32
3.1 Embedding Model . 33
3.2 Vector Database . 33
3.3 Blockchain . 34
3.4 Web App . 34
3.5 User Story . 35

4 Prototype Implementation 37
4.1 Prototype 1: Blockchain only . 37
4.2 Prototype 2: Database only . 38
4.3 Prototype 3: Hybrid Approach . 39
4.4 Components Development . 41

4.4.1 Embedding Model . 41
4.4.2 Embeddings Storage Setup . 41
4.4.3 Smart Contract Setup . 42
4.4.4 User Interface . 43

5 Results and Evaluation 45
5.1 Experimental Design . 45

5.1.1 Vector similarity based classification 45
5.1.2 Benchmarking different embedding models 48
5.1.3 Smart Contract Gas Usage Estimation 50

5.2 Prototype Evaluation . 51
5.2.1 Prototype 1: Blockchain only Evaluation 51
5.2.2 Prototype 2: Database only Evaluation 52
5.2.3 Prototype 3: Hybrid Approach Evaluation 54

6 Conclusion 55
6.1 Limitations . 55
6.2 Future Work . 56

A Smart Contracts 57
A.1 Smart Contract for AI Image Embedding Hash 57
A.2 Smart Contract for Human-created Image Embedding Hash 58

References 59

v

List of Tables

2.1 Recently published research on identifying AI-generated images 30

4.1 Tools used for prototype development. 41

5.1 Details of pre-trained models used for embedding extraction 47
5.2 Performance metric results across five selected embedding models 48
5.3 Model accuracy (%) for patch overlays and downsampling 49
5.4 Model accuracy (%) under various blur intensities 50
5.5 Gas usage statistics for hash storage using uint256 and string types 51

vi

List of Figures

2.1 An example of real images (top) and corresponding AI-generated images (bot-
tom) from popular AI image generators showcasing advancements in digital
image synthesis . 10

2.2 Example of a GAN Architecture . 11
2.3 Given content and style images, the style transfer generates a synthesized image 13
2.4 Forward diffusion process [1] . 15
2.5 Comparison of Linear and Cosine schedulers [2] 15
2.6 Reverse diffusion process [1] . 16
2.7 An embedding model transforms input data—such as images, words, or sen-

tences into fixed-length numerical vectors . 19
2.8 Representation of a 3 by 3 image using RGB matrices 20
2.9 ResNet 50 model architecture . 21
2.10 Overview of CLIP model . 22
2.11 Angle between two 2-D vectors A and B . 23
2.12 General structure of blockchain . 25

3.1 System diagram of EmbedAIDetect . 32
3.2 Sequence diagram of the EmbedAIDetect system 36

4.1 Application setup and data flowchart illustrating the image upload process
and hash-based classification using smart contracts in the blockchain-only
prototype of EmbedAIDetect . 38

4.2 Flowchart illustrating the setup and image classification process using vector
similarity search in ChromaDB for the vector database prototype of Embe-
dAIDetect . 39

4.3 Flowchart illustrating the hybrid prototype of EmbedAIDetect, combining
vector similarity search and blockchain-based verification to classify and au-
thenticate uploaded images . 40

4.4 Screenshots of EmbedAIDetect User Interface 44

5.1 Sample images from human-art dataset and AI-generated image dataset with
various modifications . 46

5.2 Confusion matrices for the vector similarity-based classification experiment . 48
5.3 Sample StyleGAN-generated synthetic images used for EmbedAIDetect pro-

totype evaluation . 53

vii

5.4 Confusion matrices showing classification performance of Prototype 2 using
vector similarity search . 54

viii

Acknowledgements

I express my sincere gratitude to several individuals who have been instrumental in complet-
ing this thesis.

First, I am deeply grateful to my thesis advisor, Dr. Suman Bhunia, whose guidance,
patience, and consistent support were vital throughout this research journey. Dr. Bhunia’s
expertise, meticulous attention to detail, and ability to set clear research directions and next
steps provided me with the structure and focus needed to bring this work to fruition.

I extend my heartfelt appreciation to Dr. Arthur Carvalho, whose architectural vision
laid the foundation for this research project. His technical insights and implementation
feedback were invaluable in shaping the practical aspects of this work.

I am also profoundly grateful to Dr. Daniela Inclezan for her thoughtful and impactful
feedback. Her suggestions and ethical support as a committee member meant a lot to me.

Together, my committee created a supportive and intellectually stimulating environment
that allowed me to grow as a researcher. Their collective expertise and encouragement were
the cornerstones of my academic development during this process.

Finally, I want to express my sincere gratitude to all the individuals who have supported
me in various ways during the completion of this thesis. Their direct or indirect contributions
have played an important role in my academic success. Thank you to everyone involved.

ix

Chapter 1

Introduction

Generative AI and large language models (LLMs), such as ChatGPT 1, have made remark-
able progress in recent years, transforming various industries by automating and enhancing
creative processes. These models, powered by advanced neural network architectures, can
generate human-like text and highly realistic images from simple prompts. With the release
of DALL-E, Google’s Imagen, Stable Diffusion, and Midjourney – diffusion models have rev-
olutionized the field of image generation, inspiring creativity, and pushing the boundaries of
machine learning [3]. These models generate a near-infinite variety of images from textual
descriptions, ranging from photo-realistic to fantastical within seconds [4]. However, as these
models become more sophisticated, their outputs become increasingly indistinguishable from
human-created content, posing significant challenges in detecting AI-generated material.

1.1 Motivation

The proliferation of AI-generated content threatens artists and creators [5], as AI models
can replicate the styles and techniques of human artists, raising concerns about intellectual
property and originality [6]. Artists may struggle to protect their work from being copied
or mimicked by AI, potentially undermining the value of original art [7]. In 2022, the
Colorado State Fair art competition witnessed an unprecedented event in which an AI-
generated image titled Théâtre D’opéra Spatial by Jason M. Allen won the first prize [8]. The
picture was created using the diffusion model-based program Midjourney 2, which transforms
text prompts into hyper-realistic artwork. This incident captivated the public and judges,
sparked controversy in the art community, and raised questions about AI’s role in creative
fields. In addition to creative fields, AI-generated images contribute to online disinformation
that threatens public discourse and trust. A notable example was the viral circulation of
fake images depicting the arrest of US President Donald Trump [9]. These fabricated visuals
demonstrated AI’s sophisticated capability to create convincing but entirely fictional content.

The field of AI-generated image detection is rapidly evolving, yet no single solution has
emerged that can universally detect images produced by all AI models. Current detectors
are often specialized and capable of identifying images generated by specific models such
as generative adversarial networks (GANs) or diffusion models, but struggle with newer
versions or different types of models [10]. Tools like AI or Not 3 effectively detect images

1https://openai.com/index/chatgpt/
2https://www.midjourney.com/
3https://www.aiornot.com/

1

https://openai.com/index/chatgpt/
https://www.midjourney.com/
https://www.aiornot.com/

from Stable Diffusion 2, DALL-E 2, and GANs but face challenges with more advanced
models like Stable Diffusion 3.5 4 and DALL-E 3 5. Although convolutional neural network-
based detectors perform well in some cases, they often fail against these advancements. A
recent study by Jiang et al. has shown that watermarking techniques, while promising for
their noninvasive approach to image authentication, remain insufficient against sophisticated
evasion methods, underscoring the need for innovative detection approaches [11].

1.2 Open Challenges

Current detection methods struggle to determine whether an image, although resembling
the original artwork, was generated by AI. The challenge lies in distinguishing between
human and AI creativity while ensuring the preservation of artistic integrity and adherence
to copyright standards. The following are the key challenges that our approach aims to
address.

• Generalization across generative models: Detecting AI-generated images is chal-
lenging due to the variety of generative models. Existing detectors often work well
with specific models like GANs or diffusion models but fail with newer models (e.g.,
Stable Diffusion 3 or DALL-E 3).

• High computational cost and complexity: Current detection models require sig-
nificant computational resources for both training and deployment. This complex-
ity makes them impractical for real-time use, particularly in smaller organizations or
resource-constrained environments, underscoring the need for more efficient detection
algorithms.

• Robustness against image alterations: AI-generated images are often manipu-
lated (e.g., resizing, compression), which can reduce detection accuracy. Many current
detectors fail when images are altered, making them less reliable in real-world use.

1.3 Proposed System

Based on the aforementioned challenges of distinguishing AI-generated images from real ones,
we propose EmbedAIDetect, a hybrid system designed to classify and verify image origins.
EmbedAIDetect allows users to upload an image, which is processed using a vision trans-
former model to generate its embedding. These embeddings are then used for two purposes:
similarity-based classification through a vector database and tamper-proof verification via
blockchain smart contracts. The system was developed through three prototype versions,
starting with a blockchain-only model, followed by a vector database-based version, and
culminating in a hybrid approach that combines the strengths of both. While the vector

4https://stability.ai/news/introducing-stable-diffusion-3-5
5https://openai.com/index/dall-e-3/

2

https://stability.ai/news/introducing-stable-diffusion-3-5
https://openai.com/index/dall-e-3/

database enables semantic similarity comparisons, the blockchain ensures that classification
results can be verified against an immutable ledger. The final prototype integrates these
components into a unified web application. More details on the embedding pipeline, classi-
fication logic, and verification mechanisms are presented in the subsequent sections of this
paper.

1.3.1 Contributions

The thesis research has made the following contributions:

1. Provides a resource-efficient, training-less AI image detection system that utilizes a
similarity score to determine the authenticity of images.

2. Identifies and implements a suitable embedding technique that is generalizable and
resistant to intentional manipulations and post-adversarial tampering attacks.

3. Integrate vector databases with embedding model and blockchain to maintain a tamper
proof record of embeddings enhancing integrity of the detection system for real-time
purposes.

1.3.2 Results

The EmbedAIDetect prototype was evaluated to assess its ability to classify images as ei-
ther AI-generated or human-created, leveraging vector similarity-based classification and
blockchain-based verification. A diverse set of image embeddings was used to evaluate the
system performance, and key metrics such as precision, recall, and accuracy were measured.
The evaluation also considered the efficiency of smart contract interactions, focusing on gas
usage during blockchain operations.

The results demonstrated that the system achieved optimal performance, with an average
accuracy across all models of 95.67% and resilience against adversarial image modifications,
including geometric distortions and varying blur levels. In terms of blockchain efficiency,
the system was found to be 2.7 times more gas-efficient when storing embedding hashes as
integers (uint256) compared to using strings. However, the system’s performance slightly
degraded when handling real human facial images, where it occasionally misclassified them as
AI-generated, underscoring the need for further refinement in distinguishing between human
faces and synthetic counterparts.

3

Chapter 2

Background & Related Work

This chapter provides an overview of the background and related work essential for the the-
sis project. The background comprises four main topics: neural networks, generative AI,
image generation, and image analysis techniques. Understanding these areas is crucial for
developing a comprehensive detection system because they provide foundational knowledge
on the underlying technologies and methodologies for generating and detecting AI-generated
images. This knowledge allows for identifying the strengths and limitations of current ap-
proaches to address specific challenges effectively. This foundation ensures that our detection
system can accurately and reliably differentiate between AI-generated images and original
artworks in diverse and evolving scenarios.

2.1 Neural Networks

Neural networks are computational models inspired by the structure and function of the
human brain. They consist of interconnected nodes, or neurons, organized in layers. Each
neuron receives input signals, processes them through weighted connections, and produces
an output that is passed to subsequent neurons. The perceptron is the fundamental building
block of neural networks, which simulates a biological neuron’s behavior by applying an acti-
vation function to the weighted sum of inputs to produce a binary output. This architecture
allows neural networks to learn and model complex patterns in data through training, which
involves adjusting the weights based on the error of the network predictions [12].

Neural networks learn through a process called backpropagation, in which the error is
propagated backwards from the output layer to the input layer, and the weights are updated
using gradient descent to minimize the error. This iterative process continues until the
network’s performance stabilizes, allowing it to make accurate predictions on new, unseen
data. Neural networks have been applied to various tasks, including image recognition,
speech recognition, and natural language processing, demonstrating their versatility and
power to handle various types of data [13].

The subsequent sections present fundamental concepts underlying neural networks and
deep neural networks. These concepts are the building blocks of many machine learning and
artificial intelligence applications.

4

2.1.1 Deep Neural Networks

Deep neural networks (DNNs) extend the concept of neural networks by adding multiple
hidden layers between the input and output layers. These additional layers enable DNNs to
learn hierarchical representations of data, capturing more abstract and complex features at
each successive layer. The depth of the network allows it to model intricate patterns and
dependencies in data, making DNNs particularly effective for tasks such as image and speech
recognition. Training DNNs requires large datasets and significant computational resources,
but advances in hardware (e.g., GPUs) and optimization algorithms have made it feasible
to train very deep networks [14].

One of the key breakthroughs in deep learning is the development of convolutional neural
networks (CNNs) [15], a specialized type of DNN designed for processing grid-like data such
as images. CNNs utilize convolutional layers that apply a series of filters to the input
data, detecting local patterns and features such as edges, textures, and shapes. These
convolutional layers are followed by pooling layers, which reduce the dimensionality of the
data while preserving essential features, making the network more efficient and robust to
variations in the input [16].

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network designed to handle sequen-
tial data by maintaining a hidden state that captures information about previous inputs.
This feature makes RNNs particularly effective for tasks requiring contextual understanding
over time, such as language processing, time series analysis, and sequence prediction [17].
Unlike traditional feedforward neural networks, RNNs have connections that form directed
cycles, allowing them to retain the memory of previous states. This architecture enables
RNNs to recognize patterns and dependencies in sequential data, making them particularly
useful for complex temporal tasks.

In detecting AI-generated images, RNNs can be leveraged to analyze sequences of features
extracted from images. Convolutional Neural Networks (CNNs) are typically used to extract
spatial features from image patches. These features are then fed into an RNN to identify
patterns that indicate the synthetic nature of the images. The ability of RNNs to remember
previous states and recognize sequential dependencies makes them adept at distinguishing
subtle artifacts that other models might miss [18]. Advanced RNN architectures like Long
Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) are particularly
effective, as they can maintain information over longer sequences, improving the detection
accuracy of AI-generated images [19].

The subsequent sections introduces specialized and robust neural network architectures
(Advanced Neural Networks) that have expanded the capabilities of deep learning models.

5

2.1.3 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are specifically designed to handle the spatial struc-
ture of images, making them highly effective for image recognition and generation tasks. A
CNN typically consists of an input layer, multiple convolutional and pooling layers, fully
connected layers, and an output layer. The convolutional layers apply filters to the input
image, creating feature maps that highlight various aspects of the image. The pooling layers
then downsample these feature maps, reducing their size while retaining important informa-
tion. This hierarchical structure allows CNNs to capture increasingly complex patterns and
features as the data progresses through the layers [16].

CNNs have revolutionized computer vision by achieving state-of-the-art performance on
various image-related tasks. For example, the AlexNet architecture, which won the ImageNet
Large Scale Visual Recognition Challenge in 2012, demonstrated the power of deep CNNs
in accurately classifying images into thousands of categories. Subsequent architectures, such
as VGGNet, GoogLeNet, and ResNet, have further advanced the field by introducing in-
novations in network depth, connectivity, and training techniques. These advancements
have enabled CNNs to be applied in diverse applications, including object detection, facial
recognition, medical image analysis, and autonomous driving [20, 21]

2.1.4 Transformers

Transformers are a type of deep learning model introduced by Vaswani et al. (2017) [22] in
their seminal paper “Attention is All You Need.” Originally designed for natural language
processing tasks, transformers have since been adapted for various applications, including
image generation and detection. The key component of transformers is the self-attention
mechanism, which allows the model to weigh the importance of different input tokens (or
parts of an image) when making predictions. This mechanism enables transformers to cap-
ture long-range dependencies and relationships within the data, making them highly effective
for complex tasks. Unlike recurrent neural networks (RNNs), transformers handle sequential
data without the need for recurrent layers, achieving parallel processing and significantly
speeding up training. Since transformers do not inherently process data in sequence, they
use positional encodings added to the embeddings at the input layer to account for the order
of tokens in a sequence. These positional encodings ensure the model can take into account
the position of each word or token in the sequence. The self-attention mechanism further
allows the model to dynamically focus on different parts of the input sequence, weighing
their significance when producing an output sequence.

In image generation, transformers have been used to develop models like Vision Trans-
formers (ViTs) and generative models such as DALL·E. ViTs treat image patches as tokens
and apply the transformer architecture to these tokens, allowing the model to learn spatial
relationships and generate coherent images. The flexibility and scalability of transformers
make them suitable for handling large-scale image datasets and generating high-quality im-
ages. Transformers’ ability to integrate contextual information from different parts of the
image also enhances their performance in image detection tasks, where understanding the

6

relationships between various image components is crucial [23].

Encoder

The encoder processes the input data (e.g., an image) and converts them into latent rep-
resentations. The encoder takes in a sequence of tokens and produces a fixed-size vector
representation of the entire sequence. It compresses input data information into the de-
coder’s context or ‘memory’. One of the most popular transformer encoder models is BERT
(Bidirectional Encoder Representations from Transformers), introduced by Google in 2018.
BERT is pre-trained on large amounts of text data and can be fine-tuned for a wide range
of Natural Language Processing (NLP) tasks [24].

In image generation, the encoder processes an image to extract its features, which are
then passed to the decoder to create a new image. An example is DALL·E, where the encoder
processes textual descriptions, and the decoder generates corresponding images, effectively
converting text into images [4].

Decoder

The decoder takes the latent representation generated by the encoder and uses it to produce
the output data. This setup is adequate for tasks like image-to-image translation and image
generation from text descriptions. The decoder takes in a fixed-size vector representation of
the context. It uses it to generate a sequence of words one at a time, each being conditioned
on the previously generated words.

One of the most popular transformer decoder models is GPT-3 (Generative Pre-trained
Transformer 3), introduced by OpenAI in 2020. The GPT-3 is a massive language model
that can generate human-like text in various styles and genres [25]. The ability to capture
complex relationships between different parts of the input data enables the encoder-decoder
architecture to generate coherent and contextually appropriate images. The encoder-decoder
framework allows for flexibility in handling different input and output modalities, making it
a versatile choice for various image-generation tasks [26].

Autoencoders

Autoencoders [27] are neural networks designed to learn efficient data representations by
training the network to reconstruct input data. An autoencoder consists of an encoder that
maps the input data to a latent space representation and a decoder that reconstructs the
original data from this latent representation. The primary objective is to minimize the
reconstruction error, ensuring that the latent representation captures the essential features
of the input data. Autoencoders are used for various tasks, including image denoising,
dimensionality reduction, and anomaly detection [28]. An autoencoder ensures that the
latent space can capture most of the information from the dataset space by forcing it to
output what was fed as input to the decoder.

7

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) represent a significant advancement in generative models
for their ability to capture essential low-dimensional data representations and generate new
samples. First introduced by Diederik P. Kingma et al. in 2013, VAEs have emerged as
a crucial method for both representation learning and generative modeling [29]. Unlike
traditional autoencoders, which compress data to a point in the latent space, VAEs encode
data into a distribution, typically a Gaussian. This probabilistic encoding allows the model
to generate new data by sampling from the latent distribution, thus providing a smoother
and more continuous latent space representation. The encoder in a VAE extracts the mean
and variance of the latent variables from the data, while the decoder uses this information,
along with Gaussian noise, to generate new samples. The core objective of a VAE is to
optimize the Evidence Lower Bound (ELBO), which balances the reconstruction loss and
the Kullback-Leibler (KL) divergence [30] between the learned latent distribution and a
prior distribution. This optimization ensures that the model not only reconstructs the input
data accurately but also generates plausible new instances that cover unseen samples in
the input data, making VAEs particularly effective for tasks such as image generation and
anomaly detection [29].

2.2 Generative AI

Generative AI is a subfield of artificial intelligence that focuses on creating new content
rather than merely analyzing or processing existing data. This technology can produce var-
ious types of content, including text, imagery, audio, and synthetic data [31]. It leverages
machine learning models, particularly neural networks, to generate outputs that are often
indistinguishable from those created by humans. Generative AI has surged in popularity due
to advancements in user interfaces that allow for the easy creation of high-quality content
in seconds. These interfaces have democratized access to powerful generative capabilities,
enabling users without deep technical expertise to harness AI’s potential for content cre-
ation [32].

Neural networks are fundamental to generative AI and modeling and generating new
data. Generative Adversarial Networks (GANs), introduced in 2014 by Ian Goodfellow [18],
have also played a crucial role in advancing the capabilities of generative AI, especially in
natural language processing (NLP). They enable the training of large language models that
generate coherent and contextually relevant text. Variational Autoencoders (VAEs) [29]
encode input data into a latent space and then decode it to create new data, making them
particularly useful for producing high-quality images and other complex data types. These
advancements have collectively propelled generative AI to create highly realistic and varied
forms of content, from text and images to audio and video.

Generative AI has experienced remarkable advancements since 2020, driven by develop-
ments in Large Language Models (LLMs) and multimodal AI applications. In 2020, OpenAI
released GPT-3, a groundbreaking generative pre-trained transformer model with 175 billion

8

parameters. This model enhanced language generation capabilities, producing more coherent
and contextually appropriate text (OpenAI, 2020). The following year, OpenAI introduced
DALL-E, a model capable of creating images from textual descriptions [33]. The year 2022
marked a pivotal moment for generative AI as it began to gain mainstream adoption. In
November, OpenAI launched ChatGPT, based on the GPT-3.5 architecture. ChatGPT
quickly gained popularity for its ability to generate human-like conversational text, making
it applicable across various applications such as customer service and content creation [34].
Google also contributed to these advancements by introducing MUM (Multitask Unified
Model), a transformer-based model designed to handle complex queries and understand text
across 75 languages [35]. In 2023, OpenAI released GPT-4, which improved GPT-3 by
enabling more sophisticated content generation and data analysis tasks [36]. Google intro-
duced Gemini (formerly Bard), a public-facing chatbot built on its LaMDA family of large
language models. Despite initial inaccuracies, Google refined Gemini, integrating it with its
most advanced LLM, PaLM 2, to enhance its efficiency and accuracy [37]. Also, Microsoft
integrated a version of GPT into its Bing search engine, improving search capabilities with
AI-driven content generation [38].

2.2.1 AI-Generated Images

AI-generated images are visual content created by artificial intelligence systems, typically
through machine learning algorithms. These images are produced using models trained on
vast datasets of existing images, allowing the AI to learn patterns, textures, and structures.
The most popular models for generating images include Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), Transformer-based models like DALL·E, and
Diffusion Models (DMs). These technologies enable the creation of images ranging from
highly realistic photographs to abstract and artistic compositions as shown in Figure 2.1.
The algorithms are developed to mimic the natural world’s visual intricacies, creating images
indistinguishable from those captured by human photographers [39, 40].

Importance in the Contemporary Digital Landscape

The emergence of AI-generated images represents a significant advancement in digital tech-
nology, impacting numerous sectors such as entertainment, advertising, and content creation.
It is estimated that over 250 million companies (77%) are using or exploring AI in some ca-
pacity within their operations, and this trend is expected to continue. In entertainment,
these images are used to generate realistic visual effects, create virtual characters, and de-
sign game environments. In advertising, AI-generated images allow for the rapid production
of diverse and tailored visuals for various marketing campaigns, enhancing engagement and
personalization. The ability to generate high-quality images quickly and cost-effectively has
also facilitated new forms of artistic expression, where artists can collaborate with AI to
explore innovative styles and concepts. As a result, AI-generated images are revolutioniz-
ing fields such as digital art, advertising, and media production, making high-quality visual
content more accessible and versatile [41, 42].

9

Real

AI
Generated

DALL·E 3 Stable Diffusion XLFirefly Image 3 Midjourney

Figure 2.1: An example of real images (top) and corresponding AI-generated images (bottom)
from popular AI image generators showcasing advancements in digital image synthesis

However, the rise of AI-generated images also brings several ethical and practical chal-
lenges, including concerns about authenticity and potential misuse in creating misleading or
harmful content [43, 44]. The ease with which AI image generator tools manipulate images
to create misleading content threatens media credibility and public trust. AI-generated pho-
tos can propagate false narratives, misrepresent actual events, and alter public perception,
impacting democratic processes and societal harmony. Also, the unauthorized use of per-
sonal images from social media can lead to privacy breaches and identity theft, as AI can
forge credible (deepfakes) fake identities. Ethically, the non-consensual use of an individual’s
likeness raises concerns about ownership and control. These issues highlight the need for ro-
bust detection and authentication methods, stringent regulations, and ethical guidelines to
ensure responsible and fair use of AI technologies in image generation.

2.3 Image Generation Models

This section explores various image generation models. Each model uses different techniques
to synthesize new visual content from training data. As we delve deeper into this section,
the focus shifts to Diffusion Models. This cutting-edge subclass utilizes stochastic processes
to construct images incrementally, and this approach has set new benchmarks for image
quality.

10

2.3.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks, commonly called GANs, are a revolutionary class of AI
models for image generation introduced by Ian Goodfellow and his colleagues in 2014 [18].
GANs consist of two competing neural networks, a generator and a discriminator, which are
trained simultaneously through an adversarial process. The generator creates fake samples
from random input vectors, crafting new data points from scratch. In contrast, the discrim-
inator acts as a binary classifier, evaluating whether the samples it receives are real (from
the dataset) or fake (from the generator). The adversarial nature of this setup comes from
the continuous competition between these two networks, similar to a zero-sum game where
the generator aims to produce indistinguishable fake samples, and the discriminator strives
to identify them correctly. An example of GAN architecture is shown in the Figure 2.2.

The training process of GANs is iterative and involves both networks learning from each
other. When the discriminator accurately classifies a sample, it “wins,” prompting the gen-
erator to adjust its parameters to create more realistic samples. Conversely, if the generator
successfully fools the discriminator, the generator “wins,” leading to the discriminator re-
fining its ability to distinguish real from fake. This dynamic process ensures that both the
generator and the discriminator improve over time, with the ultimate goal being that the
generator produces highly realistic images that are challenging for the discriminator—and
even humans—to distinguish from real images.

Training data

Generator, G

Multilayer
Neural network

R
an

d
o

m
 n

o
is

e

‘real’ samples

Generated ‘fake’ samples

D
iscrim

in
ato

r lo
ss

G
e

n
e

rato
r lo

ss

Discriminator, D

Multilayer neural
network

Backpropagation

Backpropagation

Figure 2.2: Example of a GAN Architecture

For the discriminator to function effectively, it needs a reference for what real images look
like, provided through a labeled dataset. During training, the discriminator is presented with
both real images (labeled as real) and fake images generated by the generator (labeled as
fake). This ground truth enables the discriminator to learn to differentiate between real and
generated images more accurately. Simultaneously, the generator receives feedback on how

11

convincingly it has produced fake images, using this information to refine its techniques.
This feedback loop drives the continuous enhancement of both networks, making GANs a
powerful tool for generating realistic images.

Several advancements have been made in GAN architectures to enhance their perfor-
mance. The Deep Convolutional GAN (DCGAN) introduced by Radford et al. [19] utilizes
deep convolutional layers to improve the quality and stability of image generation. DCGANs
have been particularly successful in generating high-resolution images. Another notable vari-
ant, StyleGAN, developed by Karras et al. [45], incorporates a style-based architecture that
allows for fine-grained control over the visual features of the generated images. StyleGAN
has been widely recognized for its ability to produce highly detailed and realistic images
[19, 45]. Additionally, BigGAN by Brock et al [46]. leverages large batch sizes and extensive
datasets to generate images with greater diversity and detail.

In image synthesis, GANs are used to create photorealistic images from scratch. They are
also employed in image editing tasks, such as inpainting, where missing parts of an image are
generated to complete it. Furthermore, GANs are utilized in super-resolution to enhance the
resolution of pictures and in domain adaptation to transfer styles between different image
domains. These applications demonstrate the versatility and potential of GANs in advancing
the field of image generation and manipulation [47, 48].

2.3.2 Autoregressive Models

Autoregressive models [49] generate images by predicting one pixel at a time, conditioned on
the previously generated pixels. This sequential process ensures that each pixel is generated
in the context of the preceding ones, allowing for the creation of coherent and high-quality
images. The key idea behind autoregressive models is to model the probability distribution
of each pixel given the values of all previous pixels, which makes them particularly effective
for tasks requiring fine-grained detail and consistency. The probability of the entire image
is computed as the product of the conditional probabilities of each individual pixel. The
probability of each pixel’s intensity is conditioned on all previously generated pixels, as
expressed in the following equation:

p(x) =
n2∏
i=1

p(xi|x1, . . . , xi−1)

This implies that to generate a specific pixel xi in the image, it is necessary to consider
the intensity values of all previously generated pixels.

PixelCNN, introduced by van den Oord et al. [49], is a notable autoregressive model that
uses convolutional neural networks to model the conditional distributions of pixels. Pixel-
CNN employs masked convolutions to ensure that the prediction of each pixel only depends
on the pixels that have already been generated, preserving the autoregressive nature of the
model. Another significant model, PixelSNAIL [50], enhances PixelCNN by incorporating
self-attention mechanisms, which allow the model to capture long-range dependencies and
improve the quality of generated images [50].

12

These models are used in high-fidelity image generation, where the goal is to produce
images with fine details and high visual quality. They are also employed in image completion
tasks, where missing parts of an image are predicted and filled in to create a complete
image. Also, autoregressive models are used in image enhancement tasks, such as super-
resolution, where low-resolution images are upscaled to higher resolutions while preserving
details. These applications highlight the strengths of autoregressive models in generating
high-quality images with detailed structure and texture [51].

2.3.3 Neural Style Transfer (NST)

Neural Style Transfer (NST) is a deep learning technique that blends the content of one
image with the artistic style of another, creating a novel piece of artwork. Introduced by
Gatys et al. [52] the method utilizes a pre-trained convolutional neural network (CNN) to
analyze and manipulate the visual attributes of images. By borrowing the stylistic elements
from one image and applying them to another, NST synthesizes new images that amalgamate
the content and style of the input images, resulting in visually captivating outputs.

Figure 2.3: Given content and style images, the style transfer generates a synthesized image

The process of NST involves three primary images: the content image, the style image,
and the generated image. The content image is the one whose structural elements and objects
need to be retained. The style image provides the artistic features, such as textures, patterns,
and colors, that need to be imposed on the content image. Initially, the generated image can
be a random noise image or a copy of the content image. This generated image is iteratively
modified to blend the content of the content image with the style of the style image, as
illustrated in Figure 2.3. Here, the content image is a landscape photograph from Mount
Rainier National Park, and the style image is an oil painting of autumn oak trees [53]. The

13

resulting synthesized image retains the main shapes of the content image while adopting
the vivid brush strokes and colors of the style image. This process is typically achieved
using a pre-trained convolutional neural network (CNN), such as VGG-19, which extracts
hierarchical features from content and style images.

NST defines three primary loss functions to guide the blending process: content loss,
style loss, and total variation loss. Content loss ensures that the generated image retains
recognizable features of the content image by measuring the mean squared error between the
feature maps of the generated and content images. Style loss quantifies the differences in
textures and patterns and is calculated as the mean squared error between the Gram matrices
of the feature maps of the generated image and the style image. Total variation loss helps to
reduce noise in the generated image, promoting smoother transitions. By minimizing these
losses through iterative optimization, NST effectively merges the content and style into a
synthesized image that reflects the content image’s structure and the style image’s artistic
style.

Several improvements and variants of neural style transfer have been developed to en-
hance its efficiency and flexibility. Fast Neural Style Transfer methods, such as those intro-
duced by Johnson et al. [54], use feed-forward networks to achieve real-time style transfer.
Adaptive Instance Normalization (AdaIN) [55] further improves flexibility by allowing the
model to apply multiple styles in a single network, adjusting the instance normalization
parameters according to the style. These advancements have expanded the applications of
neural style transfer, enabling its use in real-time video processing, artistic image creation,
and various content creation tasks.

2.3.4 Diffusion Models (DMs)

Diffusion Models [56] are generative models that learn from data during training and generate
similar examples based on what they have learned. Inspired by non-equilibrium thermody-
namics, these models employ a Markov chain of diffusion steps to slowly add random noise
to data and then learn to reverse this process to construct desired data samples from the
noise. Unlike VAEs or flow models, diffusion models are learned with a fixed procedure
and have high-dimensional latent variables. Several diffusion-based generative models have
been proposed with similar ideas underneath, including diffusion probabilistic models [56],
noise-conditioned score network (NCSN) [57], and denoising diffusion probabilistic models
(DDPM) [1].

Forward Diffusion Process

The forward diffusion process involves incrementally adding Gaussian noise to an input
image over a series of T steps. Initially, at step 0, we start with the original image. At each
subsequent step, the image is progressively corrupted by the noise, resulting in an image that
becomes increasingly noisy. By the final step T , the image has been transformed into pure
noise, effectively losing all original information. This transformation maps the clear image
into noise space, setting the stage for the reverse process.

14

Figure 2.4: Forward diffusion process [1]

To formalize this process, it is modeled as a fixed Markov chain with T steps. In this
chain, the image at timestep t transitions to the next state at timestep t+1. Each step in this
sequence depends only on the preceding step, allowing for a closed-form solution to obtain
the corrupted image at any specific timestep t without requiring iterative computation. The
mathematical formulation is as follows:

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI) (2.1)

q(xt|x0) = N (xt;
√
ᾱtx0, (1 − ᾱt)I) (2.2)

This closed-form expression enables direct sampling of xt at any timestep, accelerating
the forward diffusion process.

Schedulers

In diffusion models, the noise addition at each step follows a deliberate pattern determined
by a scheduler. The scheduler specifies the amount of noise to be added at each step. In the
original Denoising Diffusion Probabilistic Models (DDPM) paper [1], a linear noise schedule
ranging βt from 0.0001 at timestep 0 to 0.02 at timestep T is defined. However, several
alternatives have gained popularity, such as the cosine schedule introduced in the Improved
Denoising Diffusion Probabilistic Models paper by Nichol, A., & Dhariwal, P. (2021) [2]
provides a smoother degradation, maintaining more image information at later steps, which
results in higher quality and more stable generation.

Figure 2.5: Comparison of Linear and Cosine schedulers [2]

For example, the Figure 2.5 shows the difference between using linear and cosine schedules
for the forward diffusion process. The first row displays a linear schedule, while the second

15

row demonstrates the improved cosine schedule.
The cosine schedule performs better than the linear schedule. A linear schedule may result

in a rapid loss of information in the input image, leading to an abrupt diffusion process. In
contrast, the cosine schedule provides a smoother degradation, allowing the later steps to
operate on images that are not entirely overwhelmed by noise. This smoother progression
results in higher quality and more stable image generation.

Reverse Diffusion Process

In contrast to the forward diffusion process, the reverse diffusion process presents a compu-
tational challenge, as the formulation of q(xt−1|xt) becomes incomputable. To tackle these
challenges, deep learning models are utilized to approximate the reverse diffusion process
using a neural network.

Figure 2.6: Reverse diffusion process [1]

The main task of this neural network is to predict the total noise present in the image
at a given timestep t. By comparing this prediction with the actual noise added to the
image, the network can be trained. During inference, these networks predict the total noise
present at timestep t and then remove a fraction of this noise according to the scheduler
used, thereby refining the image incrementally.

Empirical evidence suggests that instead of attempting to retrieve the original image in
a single step by predicting the noise at timestep t, it is more stable to take smaller steps.
This approach involves removing only a fraction of the noise present at timestep t to obtain
the image at timestep t− 1. This incremental approach ensures greater stability and higher-
quality image reconstruction.

Unconditioned and Conditioned Generation

Unconditioned image generation refers to the process where a model generates im-
ages without any specific input conditions or constraints. In this approach, the model learns

16

the underlying distribution of the training data and creates new images that follow this
learned distribution. Essentially, the model converts noise into any random representative
data sample, producing an image of any nature. The generation process is neither controlled
nor guided, allowing the model to create diverse and varied outputs.

Conditioned image generation involves generating images based on specific input
conditions or constraints. These conditions can take various forms, such as class labels, tex-
tual descriptions, or other images. The goal is to generate images that adhere to the given
conditions while maintaining high quality and diversity. In conditioned image generation,
the model receives additional information during the training and inference stages, guiding
the generation process to ensure that the output images match the specified conditions.
This type of image generation is guided or controlled, allowing the model to produce specific
sets of images based on the provided conditions. For instance, in text-to-image generation
(text2img) or class-conditional generation (like in Conditional GANs), the additional infor-
mation directs the model to generate images that align with the input text or class labels.

Stable Diffusion

Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion
techniques. This model represents an advancement in generative artificial intelligence, de-
veloped by Stability AI, and is considered a part of the current AI boom. Primarily used to
generate detailed images from text descriptions, Stable Diffusion can also perform tasks such
as inpainting, outpainting, and image-to-image translations guided by text prompts [58]. Its
development involved collaboration between the CompVis Group at Ludwig Maximilian Uni-
versity of Munich and the company Runway [59], with computational resources donated by
Stability AI and training data from various non-profit organizations.

Stable Diffusion operates as a latent diffusion model (LDM), a type of deep generative
artificial neural network. Unlike previous proprietary models like DALL-E and Midjourney,
Stable Diffusion’s code and model weights have been made publicly available [60], and it can
run on most consumer hardware equipped with a modest GPU with at least 4 GB VRAM.
This openness marks a departure from earlier models that were accessible only via cloud
services, making powerful AI tools more accessible to a broader audience.

Stable Diffusion employs a three-part architecture: a variational autoencoder (VAE), a
U-Net, and an optional text encoder. The VAE encoder compresses the image into a latent
space, capturing its semantic meaning. Gaussian noise is iteratively added to this compressed
representation during the forward diffusion process. The U-Net, built on a ResNet backbone,
denoises the latent representation during the reverse diffusion process to obtain a clear image.
The final image is generated by the VAE decoder, which converts the latent representation
back into pixel space. Text conditioning is facilitated by the CLIP ViT-L/14 text encoder,
which transforms text prompts into an embedding space [61].

Stable Diffusion was trained on LAION-5B, a publicly available dataset consisting of 5
billion image-text pairs. The dataset was curated by filtering based on language, resolution,
watermark presence, and aesthetic scores. The model’s training involved 256 Nvidia A100
GPUs on Amazon Web Services, totaling 150,000 GPU-hours at a cost of $600,000. The

17

latest version, SD3 [62], was trained at a significantly higher cost of around $10 million,
reflecting the increasing complexity and capabilities of the model [63].

2.4 Image Analysis Techniques

This section delves into the techniques essential for analyzing and detecting AI-generated
images. These techniques form the backbone of the proposed detection system, enabling
efficient identification of AI-generated content. First, embedding techniques are explored,
which transform images into mathematical representations. Next, various image similarity
measures that quantify the likeness between images are examined. Finally, vector databases
are discussed, which facilitate the storage and rapid retrieval of image embeddings. By
understanding and integrating these image analysis techniques, a robust system capable of
accurately distinguishing AI-generated images from original artworks can be developed.

2.4.1 Embedding

The process of representing the real world as data in a computer is called embedding and
is necessary before the real world can be analyzed and used in applications. Embeddings
represent data—almost any kind of data, like text, images, videos, users, music, etc.—as
points in space where the locations of those points are semantically meaningful. For example,
Word2Vec [64], a technique invented by Google in 2013, embeds words into an n-dimensional
coordinate system where semantically similar words cluster together. This concept extends
to other data types: for example, similar-sounding songs will be plotted near each other in
a song-embedding space, and similar-looking images will be plotted near each other in an
image-embedding space.

Embeddings are used due to their ability to facilitate finding similar data points through
nearest neighbor search and compute numerical similarity scores between data points. This
calculation often uses Euclidean distance, dot product, and cosine similarity measures. Em-
beddings support applications like duplicate detection and facial recognition, where pictures
are embedded, and similarity scores determine if two images represent the same person. High
similarity scores in an embedding space can also indicate near-duplicate photos. Addition-
ally, embeddings can assist in typo correction by clustering common misspellings near the
correct word in the embedding space.

Vector Embedding

Vector embeddings are powerful mathematical representations used to encode complex data,
such as images, words, or sentences, into lower-dimensional vectors while preserving their in-
trinsic properties and relationships. These numerical representations transform various data
types, including non-mathematical data, into arrays of numbers that machine learning mod-
els can process. By placing semantically similar items close together in space and dissimilar
items far apart, vector embeddings enable models to detect patterns, group similar items,

18

find logical relationships, and make predictions. They can be produced for different kinds of
information—words, phrases, sentences, images, nodes in a network, etc. Generating these
embeddings involves an embedding model that transforms inputs into numerical vectors, as
illustrated in Figure 2.7. This technique is fundamental in various machine learning and
computer vision tasks because it allows for more efficient comparison and analysis of high-
dimensional data. Created using techniques like Convolutional Neural Networks (CNNs)
and other deep learning architectures, embeddings map data to a continuous vector space,
maintaining semantic notions of similarity and dissimilarity. The quality of embedding is
important as it directly impacts the performance of downstream tasks [64], so choosing an
embedding model and training data are critical components of any AI system that relies on
this technique.

Embedding Model

Images

or

Words

or

Sentences

0.7 0.3 0.5 ………

0.1 0.5 0.6 ……….

0.2 0.4 0.7 ………

Figure 2.7: An embedding model transforms input data—such as images, words, or sentences
into fixed-length numerical vectors

Image Embedding

Image embeddings are vector representations of images that capture their essential features
and semantics in a lower-dimensional space. These embeddings are widely used in computer
vision tasks such as image classification, object detection, image retrieval, and image simi-
larity. By transforming images into numerical representations, embeddings enable efficient
and effective analysis, comparison, and manipulation of visual data.

To understand how images are transformed into embeddings, consider an image with a
width and height of 3 pixels each. As shown in Figure 2.8, this image can be decomposed
into three primary colors: Red, Green, and Blue. Each color can be represented using a
2-D matrix, where each cell in the matrix contains a pixel value that indicates the color
saturation (or brightness). For instance, the Red matrix has cells with values ranging from
0 to 255, each representing a different shade of red. Therefore, for a 3 x 3 image, we have:

A Red matrix with dimensions 3 x 3 = 9 pixels A Green matrix with dimensions 3 x
3 = 9 pixels A Blue matrix with dimensions 3 x 3 = 9 pixels Hence, the entire image is
represented by a matrix with dimensions width x height x components = 3 x 3 x 3 = 27
pixels. In practice, image sizes are usually much larger than 3 x 3. For instance, a 1080p
image has dimensions of 1920 x 1080 pixels, requiring 1920 x 1080 x 3 = 6,220,800 pixels.

19

Figure 2.8: Representation of a 3 by 3 image using RGB matrices

Image embeddings are derived from image models trained on large datasets to learn
how to extract meaningful information. These models include convolutional neural networks
(CNNs), autoencoders, and generative adversarial networks (GANs), each having its own
advantages depending on the task and data. An image embedding is a vector of numbers
representing an image in a high-dimensional space. For example, an image of a cat can be
embedded as a vector of 384 numbers, such as [0.12, -0.34, . . . , 0.05]. Each number in the
vector corresponds to a feature or attribute of the image, such as color, shape, or texture.
This vector captures the essence of the image and allows comparison with other images using
mathematical operations.

2.4.2 Embedding Models

Embedding models are algorithms that convert high-dimensional data into low-dimensional
vectors, or embeddings, to make it easier for machine learning (ML) models to process. For
image detection, models like ResNet, CLIP, and EfficientNet transform images into dense
vectors that capture essential features and patterns.

Residual Network (ResNet) Embeddings

ResNet, introduced by He et al. [21] in “Deep Residual Learning for Image Recognition”
(2015), captures high-level features of an image by passing it through a series of layers.
ResNet utilizes residual blocks, which include convolutional layers, batch normalization,
ReLU activation, and shortcut connections that allow input to be added directly to the
output. This design helps optimize the learning of residual functions, facilitating the training
of very deep networks without suffering from the vanishing gradient problem.

The process to obtain embeddings begins with resizing and normalizing the input image to
match the expected size (typically 224×224 pixels). The image is then processed through an

20

Figure 2.9: ResNet 50 model architecture

initial convolutional layer, followed by batch normalization and ReLU activation, capturing
basic features. The image continues through multiple residual blocks, which apply filters
to extract increasingly complex features, normalize the output, apply non-linearity, and
use shortcut connections for learning residual functions. After passing through the residual
blocks, the feature map’s spatial dimensions are reduced, but its depth is increased. A global
average pooling layer is applied to reduce each feature map to a single value, resulting in
a feature vector. This output, the embedding, represents high-level, abstracted features of
the image, typically with dimensions equal to the number of filters in the last convolutional
layer.

In ResNet-50 as shown in Figure 2.9, a popular variant with 50 layers, the process involves
bottleneck residual blocks that use 1 × 1 convolutions to reduce and restore dimensions,
enhancing efficiency while maintaining performance. The final embedding from ResNet-50,
obtained from the global average pooling layer, is a high-dimensional vector (typically 2048
dimensions) that encapsulates essential image features. This embedding is useful for tasks
like image classification, retrieval, and detecting AI-generated images.

Contrastive Language-Image Pretraining

CLIP [65] is a multimodal embedding model developed by OpenAI and released in 2019.
It was trained using over 400 million pairs of images and text. It can be instructed in
natural language to predict the most relevant text snippet given an image without directly
optimizing for the task, similar to the zero-shot capabilities of GPT-2 and 3. Both image
and text embeddings can be calculated with CLIP, which can be used to compare image
embeddings and text embeddings. CLIP is a zero-shot model, which means the model does
not require any fine-tuning to calculate an embedding. For classification tasks, it is necessary
to calculate text embedding for each potential category and image embedding to classify the
image. Then, each text embedding is compared to the image embedding using a distance
metric like cosine similarity. The text embedding with the highest similarity is the label
most related to the image.

CLIP embeddings are used to understand and link images and text, capturing the se-
mantic essence of both visual and textual inputs. The embeddings are generated using dual
encoders: one for images and another for text. The contrastive pre-training approach used by
CLIP is shown in Figure 2.10. The text encoder processes a variety of text descriptions, cre-

21

ating text embeddings (T1, T2, . . . , TN). The image encoder processes corresponding images,
creating embeddings (I1, I2, . . . , IN). The embeddings are compared in a shared embedding
space, where the model learns to associate matching pairs (e.g., I1 with T1) and to distin-
guish them from non-matching pairs (e.g., I1 with T2, T3, . . . , TN). This training paradigm
allows the model to learn generalized representations of both images and text, facilitating
zero-shot transfer capabilities across various tasks.

Text
Encoder

Image
Encoder

T3: “a shiba dog icon”

T2: “blank map of world
continents”
T1: “ a 3d model of house”

I1

I2

I3

…
…

f(I1,T1) f(I1,T2) … f(I1,Tn)

f(I2,T1) f(I2,T2) … f(I2,Tn)

... … … …

f(In,T1) f(In,T2) … f(In,Tn)

The goal of the loss function is to maximize the
Cosine similarity of the correct image-text pairs…

…

Figure 2.10: Overview of CLIP model

2.4.3 Image Similarity

Image similarity refers to the degree to which two images are alike, quantified using various
metrics that compare pixel values, structural features, and high-level semantic content. Tra-
ditional methods like Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)
focus on pixel-level differences, whereas advanced techniques like the Structural Similarity
Index (SSIM) consider perceptual and structural aspects of images [66]. Advanced similarity
measures leverage deep learning-based embeddings to capture high-level features invariant to
transformations like scaling, rotation, and noise, which are crucial for detecting AI-generated
images. Embeddings from models like ResNet or CLIP can be compared using cosine similar-
ity to determine how closely related two images are in terms of content and style, enhancing
robustness and accuracy in image similarity assessments.

Detecting AI-generated images typically involves comparing the suspected image against
a database of known real and synthetic images using various metrics and algorithms. Tech-
niques such as SSIM [66] and pixel-wise feature extraction identify subtle differences between
real and synthetic images. Research shows that cosine similarity can effectively distinguish

22

between real and AI-generated content, highlighting the potential of similarity-based meth-
ods in enhancing detection accuracy [67, 68]. Advanced neural networks and embedding
techniques enable the extraction of high-dimensional features, capturing complex details and
making it possible to differentiate even highly realistic AI-generated images from authentic
ones [69].

Cosine Similarity

Cosine similarity is a popular metric used to quantify the similarity between two vectors
by measuring the cosine of the angle between them. In image embeddings, cosine similarity
determines how similar two images are based on the angle between their respective embedding
vectors. This measure is particularly useful because it is invariant to the magnitude of the
vectors, focusing solely on their orientation. This property makes cosine similarity well-
suited for comparing image embeddings, where the direction of the vector encapsulates the
semantic content of the image [70].

Figure 2.11: Angle between two 2-D vectors A and B

The formula for cosine similarity is given by the dot product of the two vectors divided
by the product of their magnitudes. In mathematical terms, for two vectors A and B as
shown in Figure 2.11, the cosine similarity is calculated as:

Cosine Similarity = 1 − A·B
∥A∥∥B∥ = 1 −

∑
i AiBi√∑

i A
2
i

√∑
i B

2
i

This metric ranges from -1 to 1, where 1 indicates identical vectors, 0 indicates orthog-
onal vectors, and -1 indicates opposite vectors. In practical applications, cosine similarity
compares the embeddings of query images with those in a database, facilitating tasks like
image retrieval and anomaly detection. Its effectiveness in capturing semantic similarity
makes it a vital tool for detecting AI-generated images.

2.4.4 Vector Database

A vector database is a specialized database designed to store and manage high-dimensional
vector mathematical representations of features or attributes generated by various machine
learning (ML) models, particularly embedding models. These models include natural lan-
guage processing (NLP) models like ChatGPT and models used for computer vision tasks.

23

Vector databases excel in tasks involving similarity search and classification by efficiently
handling the complex, high-dimensional data representations essential for AI applications.
Traditional databases, such as SQL for structured data and NoSQL for unstructured data,
fall short when managing and querying this type of data due to their inherent limitations in
scalability and performance.

Machine learning has transformed unstructured data into vector representations that
capture meaningful relationships within the data. These vector representations, called em-
beddings, are used for data analysis and power many machine-learning applications. For
instance, recommender systems commonly use vector embedding techniques like item2vec,
word2vec, doc2vec, and graph2vec to convert items into vectors of numeric features [71].
Recommendations are then generated by identifying the items with the most similar vector
representations. Similarly, images and natural language data also have inherent vector-based
representations due to their numeric pixel and word components [72].

Vector databases originate from vector similarity search, where early systems were capable
of similarity queries but lacked performance at scale with dynamic vector data [73, 74]. The
first solutions for similarity search were either algorithms or systems. Algorithms, such as
FAISS from Facebook [75], handle large volumes of data poorly, assuming all data and indexes
fit into the main memory. Systems like Alibaba AnalyticDB-V are not well-suited for vector
data and do not treat vectors as first-class data types. Given these issues, purpose-built
vector database solutions such as Milvus [71] emerged. Milvus is a vector data management
system built on top of FAISS that overcomes the shortcomings of previous solutions. It
is designed specifically for large-scale vector data and treats vectors as a native data type,
providing efficient and scalable management of vector embeddings.

2.5 Blockchain Technology

Blockchain is a decentralized, distributed ledger technology that allows for the secure and
transparent recording of transactions across a network of computers. Each block in the
blockchain contains a list of transactions and is cryptographically linked to the previous
block, ensuring immutability and resistance to tampering [76]. This decentralized nature
eliminates the need for intermediaries, fostering trust in peer-to-peer environments. The
Figure 2.12 represents a general structure of blockchain.

2.5.1 Ethereum Network

Ethereum [77] is a decentralized open-source blockchain platform that pioneered the concept
of smart contracts: self-executing code that runs directly on the blockchain. Launched in
2015 by Vitalik Buterin and others, Ethereum differentiates itself from Bitcoin by serving not
just as a digital currency but as a versatile platform for decentralized applications (DApps)
and programmable transactions. At its core is the Ethereum Virtual Machine (EVM), which
executes scripts using a global network of public nodes. To address environmental concerns

24

Previous block hash (Block 0)

Timestamp Nonce

Hash of block data

Data

Block 1 (Genesis Block)

Previous block hash (Block i-

1)

Timestamp Nonce

Hash of block data

Data

Block i

Previous block hash (Block i)

Timestamp Nonce

Hash of block data

Data

Block i+1

…

Figure 2.12: General structure of blockchain

and enhance scalability, Ethereum has transitioned from a Proof of Work (PoW) to a Proof
of Stake (PoS) consensus mechanism under Ethereum 2.0.

Sepolia is a lightweight Ethereum testnet designed for developers to test and deploy smart
contracts in a safe, cost-effective environment before moving to the mainnet. Unlike other
testnets such as Ropsten or Goerli, Sepolia uses a proof-of-stake (PoS) consensus mechanism,
aligning it with Ethereum’s current mainnet protocol after the merge. Its deterministic block
production, minimal resource requirements, and active support make it ideal for early-stage
development and integration testing. The stability and similarity of Sepolia to the mainnet
enable reliable testing of applications under near-production conditions without the risks
associated with real asset transfers.

2.5.2 Smart Contracts

Smart contracts are self-executing programs stored on blockchain technology that automat-
ically enforce the terms of an agreement when predetermined conditions are met. Orig-
inally conceptualized by Nick Szabo in 1994 [78] as “computerized transaction protocols
that execute the terms of an agreement,” smart contracts remained largely theoretical until
blockchain technology made practical implementation possible. Szabo famously compared
smart contracts with vending machines, autonomous systems that deliver products when spe-
cific conditions (inserting money) are met, without requiring intermediaries. Ethereum is the
first and most popular blockchain platform to widely support smart contract functionality
after Bitcoin’s introduction demonstrated the feasibility of decentralized systems.

Smart contracts offer the following benefits.

• Once implemented on the blockchain, smart contracts cannot be altered, ensuring the
integrity of the agreement terms.

• All contract execution events are recorded on the blockchain, making them fully trace-
able, reducing the risk of fraud or manipulation.

25

• By automating the execution of predetermined conditions, smart contracts eliminate
the need for third-party intermediaries, reducing associated investigation and media-
tion costs.

• Without intermediaries, the contract terms are executed automatically when conditions
are met, resulting in faster processing and more efficient transaction completion.

2.5.3 Programming Languages

Several programming languages have been developed specifically for blockchain and smart
contract development. Languages such as Solidity, Move, and Motoko are purpose-built for
blockchain ecosystems and are tailored to specific networks. In addition, several general-
purpose programming languages like Rust, Go, and C++ have gained significant popularity
within the blockchain development community due to their performance and versatility.

Solidity is the most widely used language for writing smart contracts, particularly on the
Ethereum platform. It is a high-level, object-oriented language designed for the Ethereum
Virtual Machine (EVM) [79]. With syntax closely resembling JavaScript and TypeScript,
Solidity is approachable for developers with web development experience. Its accessibility,
precision, and flexibility have made it a favored choice among blockchain developers.

The sample code below, written in the Solidity programming language, shows an example
of a Smart contract.

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract HashStorageAI {

5 // Dynamic array to store hashes as uint256

6 uint256[] private ai_hash_list;

7

8 // Event to emit when a new hash is stored

9 event HashStored(uint256 hash, uint256 hash_list_len);

10

11 // Function to store a single hash

12 function storeHash(uint256 _hash) public {

13 ai_hash_list.push(_hash);

14 emit HashStored(_hash, ai_hash_list.length);

15 }

16

17 function hashExists(uint256 _hash) public view returns (bool) {

18 for (uint256 i = 0; i < ai_hash_list.length; i++) {

19 if (ai_hash_list[i] == _hash) {

20 return true;

21 }

22 }

23 return false;

26

24 }

25 }

2.5.4 Gas Fees

Gas fees refer to the cost of performing transactions or executing smart contracts on the
Ethereum network. Because every transaction on the Ethereum network consumes com-
putational resources, a fee is required to prevent network abuse, such as spam or infinite
execution loops. This fee system ensures the network remains efficient and secure. The gas
fee is calculated by multiplying the amount of gas consumed by the transaction with the
current price per unit of gas. Importantly, this fee must be paid whether the transaction is
successful or not [80].

These fees are paid in Ether (ETH) and are determined by the complexity of the operation
and current network congestion. The native cryptocurrency of the Ethereum network is
known as ether (ETH) [77]. Since transaction fees are typically a small portion of ETH,
these costs are often expressed in smaller denominations to simplify calculations and improve
readability. Wei is the smallest unit of ETH, where 1 ETH = 1018 wei. Another commonly
used denomination is Gwei, which equals 109 wei [80]. Gwei serves as a convenient middle-
ground unit, making it ideal for representing gas fees—suitable for both small and large
values. Other blockchain platforms, such as Avalanche and Solana, use their own native
cryptocurrencies and unit systems for similar purposes.

2.5.5 Decentralized Applications (DApps)

DApps are software applications that run on a decentralized blockchain network, utilizing
smart contracts to execute logic on-chain. In practice, DApps are universally available web
services running on the EVM. Users can, however, access the DApp via a web browser or
smartphone application. They often interact with blockchain through wallets like MetaMask
and use front-end technologies such as React or Vue.js.

2.5.6 Crypto Wallets

Cryptocurrency wallets are software tools that allow users to securely store, manage, and
interact with their digital assets such as cryptocurrencies and tokens [81]. These wallets serve
as an interface between users and blockchain networks, enabling them to send, receive, and
store assets. However, unlike traditional wallets that hold physical currency, crypto wallets
do not store the actual cryptocurrency. Instead, they store the private and public keys that
are required to access and manage assets on the blockchain. The assets themselves reside
on the blockchain, and ownership is proven through the private key. This key functions
like a secure digital password, authorizing transactions and access. Losing the private key
means losing access to the corresponding digital assets—there is no way to recover the funds
without it. For this reason, securely storing private keys is crucial. Saving them in unsecured

27

locations such as internet-connected devices or plain text files exposes them to threats like
hacking, malware, and unauthorized access.

To mitigate these risks, crypto wallets implement various security features including
encryption, multi-factor authentication, and cold storage. When private keys are stored
offline, typically in a hardware device, the wallet is known as a cold wallet [81]. Cold
wallets are not connected to the internet, making them highly secure but less convenient for
frequent transactions. In contrast, hot wallets store keys on devices with internet access,
offering greater ease of use and speed but with increased vulnerability to security breaches.

MetaMask

MetaMask is a popular hot wallet that facilitates seamless interaction with the Ethereum
network and various blockchain applications [82]. Available as both a browser extension and
a desktop application, MetaMask allows users to securely manage Ethereum-based tokens,
execute transactions, and interface with smart contracts.

Users can also switch effortlessly between different Ethereum networks—including the
mainnet, testnets, and custom private chains—making it highly flexible. MetaMask’s user-
friendly interface, strong security practices, and compatibility with numerous decentralized
applications (dApps) have made it a preferred choice among Ethereum users.

2.5.7 Limitations of Blockchain Technology

Blockchain technology has made advancement across a wide range of sectors. Despite its
growing influence, blockchain is not without limitations. Like any emerging technology, it
faces several challenges related to implementation, operation, and maintenance that can
hinder its overall effectiveness [83].

• Scalability: Blockchain networks, by design, require each node to verify and store
transactions to maintain consensus and security. This distributed nature, while bene-
ficial for decentralization, significantly impacts performance. Every transaction must
go through a consensus mechanism, which involves complex verification and redun-
dancy. Unlike centralized systems that can process requests in parallel, blockchain
nodes must process transactions sequentially, which slows down the system. More-
over, as the blockchain grows, storage demands increase rapidly, posing challenges for
long-term scalability.

• Energy Usage: Blockchain networks, particularly those using Proof of Work (PoW)
consensus mechanisms, demand substantial computational resources. Mining new
blocks involves solving complex cryptographic puzzles, which requires high-performance
hardware and consumes significant amounts of electricity. As blockchain adoption in-
creases and networks expand, the associated energy consumption rises dramatically.
This makes blockchain a less sustainable technology compared to traditional systems,
especially from an environmental perspective.

28

• Privacy: While blockchain provides transparency and immutability, it lacks built-
in privacy protections. Every transaction is visible on the public ledger, which can
expose user behavior patterns and sensitive data if identities are linked to addresses.
Furthermore, errors in data entry or human mistakes can lead to permanently stored
inaccurate or compromising information. Since there is no central authority to validate
or redact this data, maintaining privacy remains a critical issue.

• Regulation and Compliance: Blockchain’s decentralized and pseudonymous na-
ture complicates regulatory oversight. There are currently no universal standards or
frameworks for blockchain governance, which creates uncertainty for organizations and
users. Additionally, the irreversible and immutable nature of blockchain data can pose
compliance risks—especially with regulations like GDPR, which require mechanisms
for data correction or erasure. The absence of consistent global regulations hinders
mainstream adoption and raises legal and ethical concerns.

2.6 Related Work

Diffusion models continue to advance the field of image generation, setting new benchmarks
for quality and efficiency. One of the notable developments is the introduction of the Stable
Cascade [84] model by Stability AI, which represents a major leap forward from its predeces-
sor, Stable Diffusion XL (SDXL). Stable Cascade offers faster performance, increased cost-
efficiency, and enhanced user-friendliness, making it a compelling choice for text-to-image
diffusion tasks. This model achieves these improvements through optimized noise scheduling
and advanced architectural designs that streamline the generation process, reducing com-
putational demands while maintaining high image fidelity [85, 86]. Enhanced conditional
generation capabilities have also emerged, with methods such as classifier-guided diffusion
and classifier-free guidance [87], making these models more versatile and effective in produc-
ing images based on specific conditions. Further advancements include the development of
pipelines using multiple diffusion models at increasing resolutions to generate high-resolution
images, coupled with noise conditioning augmentation to maintain high fidelity [88]. Innova-
tive architectural changes introduced by ControlNet [89] allow for conditioning on additional
images, enabling the generation of images based on complex inputs like Canny edges and
human pose skeletons. Lastly, the Diffusion Transformer (DiT) model [90], which operates
on latent patches, leverages the design space of Latent Diffusion Models (LDM) to enhance
both the quality and efficiency of image generation through the use of transformers.

29

Table 2.1: Recently published research on identifying AI-generated images

Published Paper Main Ideas Dataset
Used

Pros Cons Method
Used

On the detection
of synthetic im-
ages generated
by diffusion
models [91]

Assessed the difficulty of dis-
tinguishing diffusion model-
generated synthetic images from
real ones and evaluated the
effectiveness of current detectors
for GAN-generated images. An-
alyzed forensic traces and tested
deep learning detectors under
conditions like image compression
and resizing typical of social
media.

COCO
(Com-
mon
Objects
in Con-
text),
Ima-
geNet,
UCID

Provides insights into foren-
sic traces left by diffu-
sion models, crucial for de-
veloping effective detection
methods. Compares de-
tector performance, high-
lighting strengths and weak-
nesses in identifying dif-
fusion model-generated im-
ages. Analyzes scenarios,
including social media-like
conditions, for practical rel-
evance.

Detector performance is in-
consistent across different
models, indicating a lack of
generalization in current de-
tection methods. Reliance
on forensic traces that can
be easily altered by common
image processing techniques
like compression and resiz-
ing limits the effectiveness
of these detectors in practi-
cal applications.

Deep
Learning
(DL)

Towards Uni-
versal Fake
Image Detectors
That Generalize
Across Genera-
tive Models [92]

Used CLIP’s feature space for
real-vs-fake classification via
nearest neighbor and linear
probing.

ImageNet Improves a standard image
classifier trained on Pro-
GAN by +15.07 mAP and
+25.90% acc on unseen dif-
fusion and autoregressive
models.

Relies on feature space from
a pretrained model, which
is computationally intensive
and specific to that model.

DL

Unmasking
Deception:
Empowering
Deepfake Detec-
tion with Vision
Transformer
Network [93]

Uses a pre-trained ViT model
fine-tuned for deepfake detection.
Treats images as sequences of
patches, utilizing self-attention
to capture local and global fea-
tures. Processes embedded fixed-
size patches through transformer
layers.

140 k
Real and
Fake
Faces

The fine-tuned ViT model
achieves near-perfect met-
rics. Explainable AI
techniques enhance trans-
parency, revealing features
used for classification.

ViTs require significant re-
sources for training and in-
ference. Performance may
degrade with novel or so-
phisticated deepfake tech-
niques not included in train-
ing data.

Vision
Trans-
formers
(ViTs)

GLFF: Global
and Local Fea-
ture Fusion for
AI-Synthesized
Image Detec-
tion [94]

Used CNN-based feature extrac-
tion, an attention-based multi-
scale feature fusion (AMSFF)
module, and a Patch Selection
Module (PSM) to aggregate fea-
tures from ResNet-50. Features
are fused with an attention mech-
anism and fed into a binary clas-
sifier to distinguish real from AI-
synthesized images.

DeepFake-
Face-
Foren-
sics
(DF3)

Performs well on seen and
unseen data, including
images with post-processing
like JPEG compression,
Gaussian blur, and face
blending.

Reliance on CNN-based fea-
ture extraction and atten-
tion mechanisms is compu-
tationally intensive. Perfor-
mance may degrade under
extreme post-processing like
anti-forensics.

DL

AI vs. AI:
Can AI Detect
AI-Generated
Images? [95]

Used a pre-trained Efficient-
NetB4 model, fine-tuned on a
new dataset of real and GAN-
generated images. The dataset
included various synthesis mod-
els. Applied transfer learning and
integrated Class Activation Maps
(CAM) to identify discriminative
regions, providing an explainable
AI approach.

Real or
Syn-
thetic
Images
(RSI)

Achieved 100% accuracy on
the RSI dataset, with ex-
cellent generalization across
datasets and modalities.
Using GradCAM, Abla-
tionCAM, LayerCAM, and
Faster ScoreCAM enhanced
transparency and reliability
by providing insights into
the model’s decisions.

Performance relies on the
quality and diversity of the
training dataset. Biases or
gaps can affect effectiveness.
Training EfficientNetB4 and
generating CAMs are com-
putationally intensive and
challenging under extreme
conditions.

DL

Detection of
AI-Created
Images Using
Pixel-Wise Fea-
ture Extraction
and Convolu-
tional Neural
Networks [96]

Combined pixel-wise feature ex-
traction methods and CNNs for
binary image classification. The
two techniques are: i) PRNU, a
unique noise pattern from camera
sensors, differentiates real from
AI-generated images; ii) ELA de-
tects inconsistencies in compres-
sion errors, highlighting manipu-
lation or AI generation.

Dresden
Image
Database,
VISION
Dataset

The study achieves over 95%
accuracy using PRNU and
ELA features. CNNs en-
hance detection by learning
subtle differences. Grad-
CAM provides insights into
specific features and regions
contributing to the classi-
fication, increasing trans-
parency and reliability.

Dependence on PRNU and
ELA requires JPEG im-
ages, limiting applicability
to other formats. Train-
ing CNNs and generating
PRNU and ELA patterns
are resource-intensive. Per-
formance may degrade un-
der extreme manipulations
or adversarial attacks de-
signed to evade detection.

DL

AI-Generated
Image Detec-
tion using a
Cross-Attention
Enhanced Dual-
Stream Net-
work [97]

Introduces a dual-stream network:
i) Residual stream captures high-
frequency texture anomalies us-
ing a Spatial Rich Model, ii)
Content stream captures low-
frequency forged traces. Features
are integrated with a cross-multi-
head attention mechanism, then
passed through CNN layers and a
classifier to determine if an image
is AI-generated or real.

ALASKA
Database,
DsTok
Dataset,
SPL2018
Dataset

The authors constructed
DALL·E2 and DreamStudio
databases to evaluate their
method, which outper-
formed comparable methods
on CG detection datasets
DsTok and SPL2018.

The dual-stream architec-
ture with cross-attention re-
quires substantial compu-
tational resources. Effec-
tiveness depends on SRM
and content stream features,
which may be less robust
against new generative mod-
els producing different arti-
facts.

DL

The Stable Sig-
nature: Root-
ing Watermarks
in Latent Diffu-
sion Models [98]

Embed invisible watermarks in
AI-generated images using La-
tent Diffusion Models (LDMs).
The method involves two phases:
i) Pre-training a watermark ex-
tractor with a simplified HiD-
DeN method, ii) Fine-tuning the
LDM’s decoder to embed a fixed
binary signature into generated
images.

MSCOCO
Valida-
tion
Set

Embeds watermarks with-
out altering image gener-
ation, making it efficient
and secure. Robust against
transformations, maintain-
ing high accuracy even with
cropping or compression.
Allows detection and identi-
fication of AI-generated im-
ages, aiding in tracking and
verification.

Effectiveness depends on the
pre-trained extractor and
fine-tuning quality. Wa-
termarks may be less de-
tectable with extreme tam-
pering. Fine-tuning requires
access to generative mod-
els, which may not be fea-
sible for closed-source mod-
els, and sophisticated at-
tacks could evade detection.

Water-
marking

30

Published Paper Main Ideas Dataset
Used

Pros Cons Method
Used

CIFAKE: Image
Classification
and Explainable
Identification of
AI-Generated
Synthetic Im-
ages [99]

Used a CNN to classify im-
ages as real or AI-generated,
comparing synthetic images from
Stable Diffusion 1.4 with real
images from CIFAR-10 in the
CIFAKE dataset. Fine-tuned
the model through hyperparame-
ter optimization and used Grad-
CAM to visualize classification
features.

CIFAR-
10,
CIFAKE

Achieved 92.98% accuracy
in distinguishing real from
AI-generated images using
the CIFAKE dataset, com-
bining CIFAR-10 and LDM-
generated images.

Generalizability to other
AI-generated images or
models remains untested.
Future generative models
with fewer imperfections
may challenge the method’s
reliance on subtle artifacts.

DL

Multiclass
AI-Generated
Deepfake Face
Detection Us-
ing Patch-Wise
Deep Learning
Model [100]

Used Vision Transformers (ViTs)
to detect deepfake images by ex-
tracting global features. The
model divides input images into
non-overlapping patches to cap-
ture global and local information,
contrasting with traditional CNN
models focusing on local features.

140k
Real and
Fake
Faces,
Syn-
thetic
Faces
High
Quality
(SFHQ)

Outperformed ResNet-50
and VGG-16 in detecting
deepfake images, achiev-
ing a 99.90% F1 score.
Introduced a multiclass
approach, addressing chal-
lenges with Stable Diffusion
and StyleGAN2.

Vision Transformers require
significant computational
resources. Dependence on
specific training datasets
may limit effectiveness
against novel manipulation
techniques not covered in
the data.

ViTs

A Single Sim-
ple Patch is All
You Need for AI-
generated Image
Detection [101]

The SSP network distinguishes
real from fake images by leverag-
ing noise patterns. It identifies
the simplest patch with the least
texture diversity, processes it
with SRM filters to extract high-
frequency noise patterns, and uses
a fine-tuned ResNet-50 classifier
for detection.

GenImage
Dataset,
Foren-
Synths
Dataset

The SSP network general-
izes well across generative
models and image degrada-
tions, outperforming exist-
ing methods on GenImage
and ForenSynths datasets.

The SSP network’s perfor-
mance degrades with im-
age blurring or compression,
showing sensitivity to image
quality.

DL

GenImage: A
Million-Scale
Benchmark
for Detecting
AI-Generated
Image [102]

Analyzed the GenImage dataset
using two tasks: i) Cross-
Generator Image Classification
tests detectors’ generalization
by training on one generator’s
images and testing on others. ii)
Degraded Image Classification
assesses robustness against degra-
dations like low resolution, JPEG
compression, and Gaussian blur.

GenImage
Dataset

Introduces the GenImage
dataset for comprehensive
evaluation of AI-generated
image detectors, simulat-
ing real-world scenarios with
unknown models. Uses fre-
quency analysis and genera-
tor correlation to highlight
detection challenges of AI-
generated images.

The reliance on ImageNet
for real images inherits
its biases, affecting result
generalizability. Generating
and processing a large
dataset is computationally
demanding. Although it
includes various image
classes, it may not fully
capture real-world image
diversity.

DL,
ViTs

MaskSim: De-
tection of Syn-
thetic Images by
Masked Spec-
trum Similarity
Analysis [103]

Used a semi-white-box method to
detect synthetic images by ana-
lyzing masked spectrum similar-
ity, leveraging the Fourier spec-
trum to identify generative model
patterns and training a mask to
amplify discriminative frequencies
and a reference pattern to en-
hance detection accuracy.

Synth-
buster,
Po-
larDiff-
Shield,
Mit-5k,
Raise,
HDR-
Burst,
Dresden,
COCO

The method achieves high
detection accuracy, provides
explainable results, and gen-
eralizes well across gen-
erative models. It re-
mains robust even after
common post-processing op-
erations like JPEG and
WebP compression.

The method requires sig-
nificant computational
resources and relies on
the quality and diversity
of the training dataset.
Performance degrades with
rescaled or heavily ma-
nipulated images and is
limited to detecting entirely
synthetic images.

DL

31

Chapter 3

EmbedAIDetect System Design

This chapter presents an overview of the design and architecture of EmbedAIDetect, a system
developed for the reliable detection of AI-generated images. EmbedAIDetect integrates two
core components: (1) an embedding-based similarity analysis module for detecting synthetic
content, and (2) a blockchain-backed verification mechanism to ensure the integrity and
provenance of embeddings.

api

Image upload

Web Interface + API

Query DB

Retrieve
embeddings

Embedding model

Input imageVector
embeddings

1

23

4

5

6 7Check embedding
hash Boolean response

Blockchain

Figure 3.1: System diagram of EmbedAIDetect

The final system design is the outcome of an iterative development process involving three
successive prototypes. Each prototype progressively introduced key architectural concepts
that shaped the system as it stands. The first prototype implemented a blockchain-only

32

approach, storing cryptographic hashes of image embeddings for on-chain verification. The
second prototype shifted toward a vector similarity-based method using a vector database,
enabling more flexible and semantically aware image classification. The third and final
prototype integrated both strategies into a hybrid model that combines semantic similarity
with verifiable provenance. These evolving prototypes formed the basis for evaluating the
design and influenced the architecture of EmbedAIDetect, which merges both components
into a cohesive detection and verification framework.

The EmbedAIDetect AI-generated image detection framework is designed to integrate a
vector database with the embedding model and a user-friendly interface. The framework im-
plements a step-by-step pipeline for analyzing whether an unseen (uploaded) image might be
AI-generated. Figure 3.1 illustrates the architecture design for EmbedAIDetect. It provides
a user-friendly interface to upload an image and check the results. The results are based on
the embedding vectors that are stored in the vector database. The following sections provide
a detailed description of each component and their interactions, key modules, data flow, and
the rationale behind critical design choices.

3.1 Embedding Model

An image embedding model transforms images into fixed-length vector representations that
capture their semantic content. These dense embeddings position semantically similar images
close together in a high-dimensional vector space, enabling efficient similarity comparison. In
the context of AI-generated image detection, the quality and consistency of these embeddings
are critical.

After evaluating five different image embedding models on how their vector represen-
tations respond to common image manipulations, DINOv2 [104], a self-supervised Vision
Transformer (ViT) model emerged as the most suitable for the EmbedAIDetect system.
Smilar to a BERT-like transformer encoder, it treats each image as a sequence of fixed-size
patches and produces a compact representation using the final hidden state of a special
classification token. In the system workflow, input images are passed through the DINOv2
embedding function, which processes the image and extracts a normalized [CLS] token as its
embedding, then used for similarity comparison.

3.2 Vector Database

Vector databases are specialized systems for efficiently storing and querying high-dimensional
vector data. Unlike traditional SQL databases, which focus on storing and retrieving struc-
tured data, they lack the tools to efficiently index and compare vectors based on similarity
metrics such as Euclidean distance or cosine similarity. These databases implement spe-
cialized indexing structures, such as HNSW (Hierarchical Navigable Small World) or IVF
(Inverted File Index) [105], which enable efficient approximate nearest-neighbor search, cru-
cial for finding similar embeddings quickly.

33

The EmbedAIDetect system employs ChromaDB 1 as the vector database solution to
manage image embeddings. ChromaDB is an open source, lightweight, and serverless plat-
form that makes it easy to set up and run without managing a separate back-end service. It
supports persistent local storage, and collections can be created or retrieved programmati-
cally using a simple Python API. It supports integration with popular embedding providers
such as OpenAI and Hugging Face. It allows embedding functions to be defined at the time
of collection creation, enabling automatic embedding generation during data ingestion or
optional manual control when needed [106].

ChromaDB also provides flexible features for querying, including efficient similarity search
and metadata filtering, allowing retrieval of embeddings based not only on vector closeness
but also on additional image attributes. In the system workflow, when a new image is
added, its embedding is generated using the DINOv2 model, and the image metadata and
embedding are added to the appropriate collection in ChromaDB. This enables rapid and
scalable similarity comparisons during detection.

3.3 Blockchain

Blockchain is a decentralized digital ledger that ensures data integrity and transparency
without relying on a central authority. Data are stored in cryptographically linked blocks,
which makes it highly tamper resistant. Among blockchain platforms, Ethereum stands out
for its support of smart contracts, which are self-executing programs that run on-chain. This
capability allows for the building of decentralized applications (dApps) that automate and
verify processes in a trustless environment. Although newer platforms such as Solana and
Avalanche offer faster transactions and lower fees [107], Ethereum remains widely adopted
due to its robust security, mature ecosystem and strong developer support.

For this thesis project, the Sepolia test network, an Ethereum-based testnet, is chosen
to implement and prototype the blockchain-backed verification module. Sepolia offers the
advantages of Ethereum’s architecture while eliminating transaction costs, as test Ether
(ETH) can be acquired freely through public faucets 2, typically providing up to 0.05 ETH
per day. It mirrors Ethereum’s behavior, making it ideal for testing smart contracts under
realistic conditions without financial risk. Sepolia’s stability, active support, and ease of
integration made it a practical and reliable choice for validating the design and functionality
of the EmbedAIDetect system during development.

3.4 Web App

The web application serves as the central layer in the EmbedAIDetect system, integrating the
embedding model, vector database, and blockchain verification components into a cohesive

1https://docs.trychroma.com/docs/overview/introduction
2https://cloud.google.com/application/web3/faucet/ethereum/sepolia

34

https://docs.trychroma.com/docs/overview/introduction
https://cloud.google.com/application/web3/faucet/ethereum/sepolia

pipeline. Its primary role is to manage user interaction, coordinate data flow between system
components, and consolidate results for presentation.

The system follows a client-server architecture in which the web interface allows users
to upload an image for analysis. Upon upload, the image is processed by the embedding
model, which generates a high-dimensional vector representation. This vector embedding is
then used to perform a similarity query against the vector database to identify whether the
input closely matches existing embeddings of AI-generated or human-generated images.

At the same time, the web application computes a hash of the embedding and initiates
a verification step through the blockchain module. This hash is checked against a smart
contract ledger to determine whether it matches a previously registered embedding. The
result of this verification, indicating whether the embedding is recognized and verifiable, is
combined with the similarity results from the vector database to form a final response. This
entire workflow is managed through internal API calls and follows the sequence illustrated
in the system design diagram 3.1.

3.5 User Story

Figure 3.2 shows the overall interaction between a user and components of the EmbedAIDe-
tect AI-generate image detection system. The detection process is initiated by uploading an
image (suspected to be AI-generated or otherwise) through a Web Interface. This interface
serves as the front-end component. Upon receiving the image, the system forwards it to the
embedding model, which generates a high-dimensional embedding vector.

Following the embedding generation, the system enters its analysis phase. The embedding
vector is taken as input by the back-end script to query the vector database. The query is
done with cosine similarity as a metric to find the closest match with the existing data in
the database. The query results include the closest match embedding and its metadata.
The metadata has the filename, hash, and location of the image file in local storage so that
it can show to the user what the input image matches, along with similarity scores. After
analyzing the database query results, which include the closest distance to both AI training
data and human training data, the system computes the likelihood estimate based on the
query results, which are AI-generated.

The system incorporates a crucial feedback loop for continuous improvement. After
displaying the analysis results to the user, an optional validation step allows users to confirm
or correct the system detection. If the user already knows that the input image is real or
fake, this validation step will increase the system’s accuracy, since human validation provides
valuable ground-truth data. When users provide feedback, the system stores this validated
information through the back-end script and persists it in the database, creating a growing
corpus of verified examples. The storage of this feedback is confirmed through the system
and any resulting improvements in the detection mechanism are communicated back to the
user.

35

Streamlit (Web
Interface) DINOV2 model

Generate Embedding

Return Embedding Vector

Backend Script

Compute Likelihood

Chroma Vector
DB

Upload Image

Send Embedding

Query Top Matches

Return Matches

Send Results

Display Analysis

Confirm Correctness
Store Validated Data

Persist Data

Confirm Storage

Acknowledge

Show Improvement

opt [is_correct or is_false]

Wrap with Metadata

Figure 3.2: Sequence diagram of the EmbedAIDetect system

36

Chapter 4

Prototype Implementation

In the previous chapter, we discussed the system design for EmbedAIDetect. This chapter
provides the implementation details for the EmbedAIDetect prototype developed incremen-
tally through three distinct prototype versions, where each version builds on the previous
one. The goal of such a development process is to show how each prototype was concep-
tualized, implemented, and improved to build the final system. Each version introduces
new components—starting from a blockchain-only setup, to incorporating a vector database
for similarity search, and finally combining both for verification and classification. Detailed
flowcharts and explanations for each prototype are provided in the following sections to
illustrate the application logic and architectural decisions.

4.1 Prototype 1: Blockchain only

The application setup as shown in Figure 4.1 for the first prototype focuses on the preparation
of the blockchain environment and the datasets required for the image classification process.
The system begins by initializing two arrays: one for AI-generated images and one for
real (human) images. A total of 7,000 images from each category are loaded. For every
image in the datasets, the system extracts embeddings using the DINOv2 model. These
high-dimensional embeddings are then converted into 256-bit hashes. The resulting hashes
from AI-generated images are stored in a smart contract called HashStorageAI, whereas the
hashes from real images are stored in a separate contract named HashStorageHuman. This
structure ensures a clear and immutable distinction between the two types of image origins,
entirely on-chain, without relying on any external database.

Figure 4.1 is a flow chart for the use of the prototype after setup. When a user uploads an
image for classification, the application extracts its embedding using the same DINOv2 model
and computes the corresponding 256-bit hash. The system then checks this hash against the
two smart contracts: HashStorageAI and HashStorageHuman. If a match is found in Hash-
StorageAI, the image is classified as AI-generated. If the hash exists in HashStorageHuman,
it is labeled as a real image. In cases where the hash is not found in either contract, the
result remains inconclusive. This approach leverages the immutability and transparency of
blockchain to verify the authenticity of the image without involving a traditional database
or external storage mechanism.

37

blockchain based method setup

Application f low

Start

Get embedding using DINOv2 embedding function

if hash matches in

HashStorageHuman
contract

Upload Image

Get 7000 AI images and 7000 human images

if counter <
total_images

Get embedding of the image
using DINOv2 model

Get 256-bit hash of embedding

Yes

if
AI_image

Increment the
counter by 1

Yes
No

Initialization
- Initialize AI image array

- Initialize human image array

End

Yes

No

if hash
matches in HashStorageAI

contract
Yes

No

Get 256-bit hash

Uploaded image is
generated by human

No

Store hash in
HashStorageHuman

smart contract

Store hash in
HashStorageAI
smart contract

Start

Uploaded image
is AI generated

End

No match found

Figure 4.1: Application setup and data flowchart illustrating the image upload process and
hash-based classification using smart contracts in the blockchain-only prototype of Embe-
dAIDetect

4.2 Prototype 2: Database only

The application setup as shown in Figure 4.2, is the second prototype which introduces
a vector similarity-based approach using a vector database, specifically ChromaDB. The
setup begins by initializing two distinct collections: one for AI-generated images and one
for real (human) images. Each collection is populated with 7,000 images, respectively. For
every image, the DINOv2 image embedding model is used to extract high-dimensional vector
embeddings. These embeddings are then stored in the appropriate collection along with their
corresponding metadata. This configuration allows the system to leverage efficient similarity
search operations for classification without involving the blockchain at this stage.

Upon uploading a test image, the system calculates its embedding using the same DI-
NOv2 model. This embedding is then used to query both the AI and the human collections
within the vector database. The system retrieves the closest match from each collection and
calculates the distance to both. If the distance to the AI collection is smaller than that to
the human collection, the image is classified as “Likely AI.” Otherwise, it is classified as
“Likely Human.” This approach emphasizes semantic similarity over cryptographic proof,

38

aiming to classify images based on how closely their embedding aligns with known examples
from each category.

Vector database method setup

Application f low

 (ai_distance <
human_distance)

?

Get vector embedding of the image

Get 7000 AI images and 7000 human images

Initialization
- Initialize AI image collection

- Initialize human image collection

Upload Image

Query AI_collection and human_collection
with the image embedding

No Yes

Start

if counter <
total_images

Get embedding vector of image using
DINOv2 model

Construct image metadata

Yes

Yes

Increment the
counter by 1

No

No

End

Add image to the Human
collection in ChromaDB

Add image to the AI
collection in ChromaDB

if
AI_image

Start

Likely Human Likely AI

End

Find closest match

Figure 4.2: Flowchart illustrating the setup and image classification process using vector
similarity search in ChromaDB for the vector database prototype of EmbedAIDetect

4.3 Prototype 3: Hybrid Approach

The third prototype flow chart, as shown in Figure 4.3 integrates both blockchain and vector
database approaches to form a hybrid system. It begins by initializing two collections,
AI collection and human collection in ChromaDB vector database, each populated with
7,000 images. For every image, the system extracts vector embeddings using the DINOv2
model, constructs the necessary metadata, and stores the embeddings in the corresponding
collection. In parallel, a 256-bit hash is computed from each embedding and stored in a
blockchain-based smart contract (HashStorageAI or HashStorageHuman), depending on the
image’s origin. The prototype architecture ensures that every embedding used for similarity
search is also immutably anchored on the blockchain for later verification.

When a test image is uploaded, its embedding is calculated using the DINOv2 model and
is used to query both the AI and human collections in ChromaDB. The system identifies the

39

closest match from each collection and compares their distances to determine to which group
the image is most likely to belong to. Once the likely category is identified, the embedding
of the closest matched image is retrieved, and a 256-bit hash of that embedding is computed.
This hash is then verified against the blockchain through the appropriate smart contract.
If the hash is found, the classification is declared valid and verifiable. If the hash does not
exist on the chain, the result is considered unverified and the system may label the image
as “undecided.” This hybrid method ensures both semantic accuracy and tamper-proof
verification.

Hybrid method setup

Application f low

 if ai_distance <
human_distance

Get the vector embedding of the
closest matched AI image

Get the vector embedding of the
closest matched Human image

Get vector embedding of the image

if counter <
total_images

Yes

Increment the counter by 1

Initialization
- Initialize collection AI_collection

- Initialize collection human_collection
Upload Image

Find AI_closest_distance and Human_closest distance

No Yes

Get the 256-bit hash of the embedding

Store the 256-bit hash into HashStorageHuman and
HashStorageAI smart contract

Get the stored emebdding from Human and AI collection

Get the 256-bit hash of the closest
matched embedding

Check in
HashStorageAI/Human

smart contract
 (hashExists() == True)

Get 7000 AI images and 7000 human images

Start

End

Get embedding vector of image using
DINOv2 model

Construct image metadata

Yes No

Add image to the Human
collection in ChromaDB

if
AI_image

Add image to the AI
collection in ChromaDB

Start

Query ChromaDB database with the sample_embedding

Find closest match with AI_collection and Human_collection

Yes

Verif iable on
blockchain

End

Not verif iable

No

No

Figure 4.3: Flowchart illustrating the hybrid prototype of EmbedAIDetect, combining vector
similarity search and blockchain-based verification to classify and authenticate uploaded
images

40

Table 4.1: Tools used for prototype development.

Functionality Chosen tool
User Interface Streamlit v1.41.x
Programming Language Python v3.12.x
Vector Database ChromaDB v0.6.x
Embedding Model Transformers v4.48.x
Smart Contract Language Solidity v0.8.x
Smart Contract Development Hardhat v2.23.x
Crypto Wallet MetaMask
Web3 Provider Alchemy’s API
Blockchain Network Ethereum Sepolia Testnet
Package & Environment Management Conda v24.11.x

4.4 Components Development

This section outlines the main components developed during the implementation phase, de-
tailing how each part of the system was constructed and how they collectively contribute
to the functionality of the final prototype. The components mirror the architectural mod-
ules described above, ensuring traceability from design to execution. All tools used for the
development of EmbedAIDetect prototype components are listed in Table 4.1.

4.4.1 Embedding Model

We created a custom embedding function for the embedding model using the AutoModel
and AutoProcessor classes from the Hugging Face transformers v 4.48.x library. The
processor transforms each input image into tensors that the vision transformer can interpret
directly, and the entire set-up is shifted to a GPU (cuda) device for accelerated computation.
When the model is called on an image file, the file is pre-processed before entering the
forward pass of the neural network. During this pass, the model produces a tensor of
patch-level hidden states for each image. To condense these patch representations into a
single embedding, the hidden states are averaged across the patch dimension. The resulting
vector is then moved to CPU memory, converted into a NumPy array, and flattened into
a conventional Python list. This flattened list ensures compatibility for downstream tasks
such as insertion into the vector database Chroma DB.

4.4.2 Embeddings Storage Setup

We used an open source vector storage library Chroma DB as the database for the prototype.
It maintains specialized collections optimized for similarity searches in high-dimensional
spaces, making it well suited for identifying semantically related images. The database is
initiated as PersistentClient by specifying a local storage path. Any specific embedding

41

model like DINOV2 needs to be wrapped in a function and can be passed as a parameter
when creating collections. Collections, where embeddings, documents, and any additional
metadata are stored, are groups that are similar to tables in relational databases. Each
collection, dedicated to AI-generated or human-art images, is configured with an embedding
function and metadata specifying the distance metric (in this case, cosine). When new data
arrive, the embedding function automatically transforms them into numerical vectors for
storage. Chroma DB supports querying stored embeddings using both embedding-based
and text-based search modes. We used querying by embeddings for the application as the
user provides an unseen image for which the embedding function generates vector embedding,
and the database returns the top k closest matches. The results are handled separately by
a back-end Python script for analysis and displayed to the user via Streamlit.

4.4.3 Smart Contract Setup

To integrate blockchain functionality into the system, the Ethereum [77] network was se-
lected as the underlying blockchain platform due to its robustness, wide adoption, and com-
prehensive developer tooling. Smart contracts were written using Solidity, Ethereum’s native
programming language, allowing for efficient development and deployment of on-chain logic.
Specifically, two contracts HashStorageAI and HashStorageHuman were created to store
256-bit hash representations of image embeddings for AI-generated and human-art (real)
images, respectively. The contracts were developed and tested locally using Hardhat, a
popular Ethereum development environment that supports Solidity compilation, contract
deployment, and local testing. To deploy the contracts in a live test environment, the
Ethereum Sepolia test network was used. Sepolia was chosen for its lightweight structure,
Proof-of-Stake (PoS) consensus, and compatibility with the Ethereum mainnet architecture.
Deployment to the Sepolia network required access to Web3, for which the setup of an
Alchemy account was required, which provided the RPC URL and API key needed to es-
tablish an authenticated connection between the Python development environment and the
Ethereum network.

For the interaction between the deployed smart contracts and the backend system, a
Web3 interface was implemented using Python’s Web3.py library. This library enables pro-
grammatic communication with Ethereum nodes through JSON-RPC, allowing the back-end
to execute read/write operations on smart contracts. To simplify this integration, a custom
wrapper class was developed in Python to abstract away the complexity of raw contract
calls. This wrapper handles contract initialization, function binding using the Application
Binary Interface (ABI), and transaction signing with MetaMask. MetaMask was used as
the crypto wallet to securely store the private keys and authorize transactions, such as
adding new hashes to the blockchain. The wrapper class exposes high-level functions like
store hash() and check hash exists(), enabling smooth interactions with the blockchain
layer from within the web application.

42

4.4.4 User Interface

We leveraged Streamlit 1 to build a simple single page user interface. It allows data scripts to
be turned into web applications with minimal code and provides a reactive web application
framework that manages the state of the application while handling data passing between
components. This web interface acts as the integration layer that connects the embedding
model, the vector database, and the blockchain verification module, forming a cohesive and
interactive end-to-end system.

The interface follows a client-server architecture, where the server-side logic handles the
core functionality, including embedding computation, database querying, and blockchain
verification. A file uploader component is used to upload an image, ensuring that only
valid image formats such as JPG, JPEG, PNG and WEBP are accepted. Once an image
is uploaded, it is displayed within the application using Streamlit’s image component. A
button component then triggers a structured sequence: the image is passed to the embedding
model to generate an embedding. This embedding is used to query the vector database for
similarity matches. Internal API calls manage this interaction and data flow, abstracting
the complexity from the user.

During the process, a progress bar and real-time status updates inform users about the
different stages, including embedding generation, similarity search, and final classification.
Detection results are displayed using alert components, which indicate whether the up-
loaded image is likely to be AI-generated or human-generated. A confidence score is also
provided, derived from the cosine similarity distance between the query image and the closest
matches in the AI and human image collections.

In addition to off-chain similarity scoring, the web interface incorporates blockchain-
based verification to enhance the trustworthiness of the result. After generating the em-
bedding, the Web application derives a 256-bit hash and queries the deployed smart con-
tracts—HashStorageAI and HashStorageHuman—on the Ethereum blockchain to check if
the hash already exists. Based on the response, the interface appends a verification status,
such as ’verifiable’ or ’not verifiable’, to the classification output.

The EmbedAIDetect prototype has been designed to offer a simple and user-friendly
interface. It follows a single-page application (SPA) architecture, where the interface dy-
namically updates content without requiring full page reloads. This results in a smoother
user experience, faster interaction, and more seamless transitions between different function-
alities within the system.

The prototype consists of uploading images, verifying via blockchain, scoring similarity
using vector databases, and displaying the results in a unified interface. Users can easily
navigate through different verification modes (blockchain-only, vector DB-only, hybrid) from
the sidebar. Figure 4.4 shows screenshots of the prototype components.

1https://docs.streamlit.io/

43

https://docs.streamlit.io/

(a) Home page with system status and up-
load prompt

(b) Preview of the uploaded image

(c) Detection result with closest image match
from database

(d) Blockchain verification result when image
hash is not found

Figure 4.4: Screenshots of EmbedAIDetect User Interface

44

Chapter 5

Results and Evaluation

This chapter presents the results of the experimental design implemented to validate the
thesis research and evaluate the EmbedAIDetect prototype, an AI-generated image detec-
tion system. The evaluation focuses on key performance metrics such as precision, recall,
and precision, as well as estimated gas usage associated with the system’s operations. In
addition, feedback from research committee members is incorporated to assess the system’s
effectiveness in addressing the research questions.

5.1 Experimental Design

To rigorously assess the performance and robustness of EmbedAIDetect, we designed a com-
prehensive experimental framework focused on evaluating the role of vector embeddings in
detecting AI-generated images. This framework addresses Research Question 2, which inves-
tigates the identification and implementation of an embedding technique that is generalizable
and resilient to deliberate manipulations. The experimental setup consists of two key stud-
ies: one that explores vector similarity-based classification for detection and another that
benchmarks various embedding models to determine their effectiveness under adversarial
conditions.

All experiments were carried out in a high performance computing environment equipped
with an Intel Core i9-14900K CPU, 66 GB of RAM, and an NVIDIA GeForce RTX 4090 GPU
to ensure efficient handling of computationally intensive tasks. To evaluate the blockchain
integration aspects of the system, we used Hardhat, a widely adopted Ethereum development
framework, to simulate gas usage and smart contract interactions in a controlled environ-
ment.

5.1.1 Vector similarity based classification

The goal of this experiment is to evaluate the feasibility and effectiveness of using vector
embeddings, coupled with cosine similarity, to distinguish between AI-generated and human-
created images. The underlying hypothesis is that despite visual similarities, the embedding
space representations of these images reveal distinct patterns when processed through pre-
trained image classification models.

45

Dataset Construction

A diverse dataset was curated, excluding human faces to maintain generality. It comprises
9,000 AI-generated images and 6,074 human-created artworks. The AI images were generated
using the Stable Diffusion 3.5 Medium model from Stability AI, available via the Hugging
Face platform. To ensure uniformity and optimize both quality and generation time, all AI
images were rendered at a fixed resolution of 512×512 pixels. The prompts were constructed
systematically to cover a variety of themes, subjects, and artistic styles. The human data
set is sourced from the Kaggle art-images collection, and data cleaning was performed to
remove corrupted and duplicate entries.

Below are representative examples of prompts used to generate AI images:

• “A tropical floating islands in glitch art style”

• “A biotechnological deep space in photorealistic style”

• “A time travel rain forest canopy in psychedelic art style”

• “A neon concert hall in low poly style”

• “A mystical art studio in neon style”

The human-created images were sourced from the Kaggle art-images dataset and under-
went careful preprocessing to remove duplicates and corrupted entries. Figure 5.1 illustrates
sample images from both categories, highlighting the nature of the dataset and the types of
manipulations applied.

a) Human art images b) AI image c) One patch

overlay
d) Multi patch

overlay

e) Blur 20% f) Blur 40% g) Blur 60% h) Blur 80%

Figure 5.1: Sample images from human-art dataset and AI-generated image dataset with
various modifications

46

Methodology

Our methodology implements a novel classification pipeline that involves extracting vector
embeddings from each image using a selection of pre-trained models. These embeddings were
stored in the Pinecone vector database, organized into distinct namespaces for training and
testing datasets, which were split in a 4:1 ratio. For each image in the test set, the closest
distance to the AI-generated image training set and the human-created image training set
is calculated using a similarity search with the cosine distance as the metric. These nearest
distances are stored in spreadsheets for further evaluation.

Table 5.1: Details of pre-trained models used for embedding extraction

Model Name Publisher Model Identifier Embedding
Dimension

CLIP OpenAI openai/clip-vit-base-patch32 512
ViT Google google/vit-base-patch16-224 768
DINOv2 Facebook facebook/dinov2-base 768
ResNet-50 Microsoft microsoft/resnet-50 2048
AIMv2 Apple apple/aim-v2-base 1024

The experiments were carried out repeatedly using five pre-trained models, as shown in
Table 5.1. For each model, separate Pinecone indexes were maintained, and the data was
logically partitioned to isolate training and test sets. After computing the cosine distances
between test image embeddings and both AI-generated and human-created training sets, a
simple decision rule was applied: a test image was classified as AI-generated if its closest
match belonged to the AI set and as human-created otherwise.

This classification logic represents the central hypothesis of the detection system. The
resulting distance values were recorded in two spreadsheets—one for AI test images and one
for human test images, and used to generate the confusion matrix and related evaluation
metrics such as precision, recall and accuracy.

The classification rule is defined formally as follows.

AI or not(x) =

{
1 if d(x,A) ≤ d(x,H)

0 if d(x,A) > d(x,H)
(5.1)

where;

x : supplied image embedding vector

A : set of AI-generated image embeddings

H : set of human-generated image embeddings

d(x, S) = min
s∈S

{cosine distance(x, s)}

47

(a) CLIP Confu-
sion Matrix

(b) DINOV2
Confusion Matrix

(c) Google VIT
Confusion Matrix

(d) AIMV2 Con-
fusion Matrix

(e) ResNet50
Confusion Matrix

Figure 5.2: Confusion matrices for the vector similarity-based classification experiment

Results

Figure 5.2 presents confusion matrices for five different models (CLIP, DINOv2, Google
ViT, AIMV2, and ResNet50), which illustrate their performance in classifying images as
AI-generated or human-created. Confusion matrices show the true positives, true negatives,
false positives, and false negatives, providing insight into how well the models distinguish
between the two categories. A higher number of true positives and true negatives, with fewer
false positives and negatives, indicates better model performance.

The results, summarized in Table 5.2, show consistently high performance in most models.
OpenAI’s CLIP achieved the highest accuracy at 99.51%, with precision and recall nearing
perfect scores. AIMv2 also demonstrated robust performance across all metrics. Although
the ResNet-50 model maintained high precision, its lower recall (82.6%) resulted in an overall
accuracy of 89.48%, highlighting its sensitivity to false negatives.

Table 5.2: Performance metric results across five selected embedding models

Models Precision Recall Accuracy
CLIP 0.9935 0.998 0.9951
ViT 0.988 0.987 0.9856
DINOv2 0.9881 0.9945 0.9899
ResNet-50 0.9898 0.826 0.8948
AIMv2 0.992 0.994 0.9919

5.1.2 Benchmarking different embedding models

The goal of this experiment is to evaluate the robustness and consistency of various image
embedding models when subjected to deliberate manipulations of input images. The primary
objective is to determine whether the embeddings of altered images remain sufficiently similar
to their original counterparts, thus validating the generalizability of embedding techniques
used for the EmbedAIDetect system. This analysis provides critical evidence to support the

48

system’s ability to withstand adversarial or heavy image modifications, as stated in Research
Question 2.

Experimental Setup

Using the original dataset of 9,000 AI-generated images from the previous experiment, we
created six distinct sets of modified images to simulate common geometric and visual dis-
tortions. These included single- and multiple-white patch overlays, as well as resolution
reduction (downsampling). Each of the six modifications generated a corresponding set of
9,000 altered images.

For each modification, embeddings were computed using the five pre-trained models
introduced earlier: OpenAI CLIP, Google ViT, Facebook DINOv2, Microsoft ResNet-50,
and Apple AIMv2. Embeddings of the modified images were stored in separate Pinecone
indexes and compared against the embeddings of the original, unaltered images using cosine
similarity. A correct match is counted when the nearest neighbor in the embedding space
corresponds to the unmodified version of the image. The accuracy is calculated using the
following equation.

Accuracy =
Number of Correct Matches

9000
× 100% (5.2)

where a correct match occurs when the modified image’s
embedding is closest to its original AI image embedding

This approach directly measures whether the model preserves semantic similarity between
the original and manipulated images in the embedding space.

Results: Geometric modifications

Table 5.3 summarizes the accuracy of each model under three types of geometric alterations:
a single white patch (128 × 128 pixels), multiple patches (3–5), and reduction in resolution
(from 512 × 512 to 128 × 128 pixels). Facebook’s DINOv2 exhibited the highest resilience,
achieving perfect accuracy with single patch overlays and 99.94% accuracy under resolution
reduction. In contrast, OpenAI’s CLIP showed the greatest performance drop under multiple
patch overlays, with accuracy falling to 73.34%.

Table 5.3: Model accuracy (%) for patch overlays and downsampling

Models 1 Patch Overlay 3-5 Patches Overlay Resizing
CLIP 97.26 73.34 98.04
Google VIT 99.88 91.62 98.98
DinoV2 100.00 99.62 99.94
ResNet-50 99.89 84.02 98.47
AIMV2 99.96 92.59 99.81

49

Results: Blur transformations

The second set of modifications applied varying levels of Gaussian blur to the original images,
ranging from intensity 20% to intensity 80%. The objective was to observe degradation
patterns in the accuracy of the matching as the visual noise increased.

Table 5.4: Model accuracy (%) under various blur intensities

Models Blur Intensity
20% 40% 60% 80%

CLIP 96.68 80.96 48.12 30.02
Google ViT 99.86 96.00 84.17 67.06
DinoV2 100.00 99.87 96.86 88.44
ResNet-50 98.52 74.18 44.36 24.67
AIMv2 99.65 96.81 90.08 80.13

As detailed in Table 5.4, DINOv2 once again demonstrated superior robustness, main-
taining 88.44% accuracy even at the highest blur level. Transformer-based models such as
AIMv2 and Google ViT also performed well at lower blur levels, exceeding 99% accuracy at
20% intensity. However, all models exhibited a gradual decline in accuracy with increased
blur. In particular, ResNet-50 showed the steepest performance degradation, dropping to
just 24.67% accuracy at 80% blur.

5.1.3 Smart Contract Gas Usage Estimation

This experiment was designed to evaluate and compare the gas consumption incurred when
storing 256-bit embedding hashes on the Ethereum blockchain using two different Solidity
data types: uint256 and string. The purpose was to empirically determine the gas effi-
ciency of each approach, which is critical when scaling decentralized applications that store
or verify large volumes of hashed data.

Experimental Setup

To empirically assess gas usage differences, two separate Solidity smart contracts were im-
plemented:

• HashStorageInt: Stores the 256-bit image embedding hash as uint256.

• HashStorageStr: Stores the same 256-bit hash as a string.

Each smart contract included two core functions: storeHash(input hash) for storing a
hash value on the blockchain, and hashExists(input hash) for verifying whether a given
hash is already present in the contract’s storage.

Both contracts were developed and tested in a local Hardhat Ethereum environment,
where extensive unit tests were written to validate the functionality of the smart contracts.

50

Subsequently, both contracts were also deployed on the Sepolia testnet, where transactions
were executed to measure real-world gas usage. Only 200 image embedding hashes were
stored on Sepolia due to constraints in transaction time and limited gas availability.

Results

Gas usage was recorded for each transaction involving the storeHash(input hash) function
in both contracts. The summarized statistics are provided in Table 5.5. These findings
clearly show that storing a 256-bit embedding hash as a uint256 is approximately 2.7 times
more gas efficient than storing it as a string.

Table 5.5: Gas usage statistics for hash storage using uint256 and string types

Statistic Gas Usage (uint256) Gas Usage (string)
Count 9,000 transactions 9,000 transactions
Mean 36,207 gas 97,667 gas
Median 36,184 gas 97,667 gas
Minimum 21,528 gas 97,667 gas
Maximum 51,228 gas 97,667 gas

5.2 Prototype Evaluation

To assess the practical performance of our AI image detection system, we developed and
deployed a working prototype capable of performing image classification based on stored
image embeddings and integration of smart contracts. The goal of this evaluation is to
understand how the system behaves when given input images from the real world and whether
it can accurately categorize images as AI-generated or human-generated. The prototype
allows for uploading any image, processes it through an embedding model, and returns a
classification result based on the similarity match with the embeddings stored in the local
database.

This evaluation phase focused not only on the overall classification accuracy, but also
on identifying potential limitations, especially in diverse and uncontrolled image settings.
The prototype was subjected to various image categories to simulate practical use cases. We
specifically examined how the system handles facial images (often generated by StyleGAN)
compared to non-facial or generic image categories, such as artwork and nature.

5.2.1 Prototype 1: Blockchain only Evaluation

To evaluate the blockchain-only prototype, we conducted manual testing using the system’s
user interface by uploading individual image files for classification. In this setup, the backend
system used a predefined dataset of 7,000 AI-generated images and 7,000 real (human)
images. For each image, an embedding was generated using the DINOv2 model, and a

51

256-bit cryptographic hash of this embedding was computed and stored on the Ethereum
Sepolia test network via two dedicated smart contracts: HashStorageAI for AI-generated
images and HashStorageHuman for real ones. When a new image is uploaded, the system
computes its embedding and hash, then compares the hash against both smart contracts. If
a match is found in either contract, the image is classified accordingly—AI or human—and
marked as verifiable. Otherwise, if no match exists, the system cannot make a definitive
classification, and the result is labeled as inconclusive.

This evaluation method, although functionally sound in design, encountered several prac-
tical challenges due to limitations inherent in on-chain data storage. Specifically, storing all
14,000 image hashes on the Ethereum blockchain introduced high computational and finan-
cial overhead. Every transaction to add a hash to a smart contract incurs a gas fee, and
when many transactions are sent in rapid succession, network congestion and rate limita-
tions often lead to failed or dropped transactions. From a technical standpoint, this results
in nonce conflicts, out-of-gas errors, or rate-limiting by the node provider (Alchemy), thereby
preventing the successful storage of all intended hashes. Consequently, while every image
embedding was stored in the local vector database, only a subset of those corresponding
hashes could be reliably registered on-chain. As a result, many uploaded images during
evaluation matched an embedding in the database but failed the blockchain verification
check—leading to false negatives in verifiability. This limitation highlights the trade-offs
between blockchain transparency and system scalability, particularly in use cases involving
large-scale data operations.

5.2.2 Prototype 2: Database only Evaluation

The second prototype focused solely on embedding-based classification using vector simi-
larity search. Before formally evaluating Prototype 2, we expanded the system’s internal
database to better support classification of facial images—an area where the system initially
struggled. We first introduced 10,000 high-resolution AI-generated facial images created
using StyleGAN, sourced from https://thispersondoesnotexist.com/, into the AI cate-
gory. The model showed strong performance in identifying similar StyleGAN images during
testing, correctly labeling over 90% of such inputs as synthetic. Some examples of correctly
classified AI faces are shown in Figure 5.3. However, this also led to a growing tendency to
misclassify real human faces as AI-generated, suggesting the embedding space was becoming
biased toward synthetic features.

To mitigate this issue, we integrated 1,441 real facial images from the Chicago Face
Database (CFD) [108, 109, 110] into the human category. This addition provided more di-
versity in real facial representations and slightly improved accuracy for some real images
during early tests. However, the underlying issue persisted: the model continued to misclas-
sify many real human faces, particularly those with uniform lighting and frontal poses, likely
because of their visual similarity to StyleGAN outputs. This imbalance in the database
influenced how the system later performed during the formal evaluation stage.

With the internal database prepared, we proceeded to evaluate the prototype using two
external datasets: (1) CIFAKE [99, 111], which includes a wide range of non-facial real and

52

https://thispersondoesnotexist.com/

Figure 5.3: Sample StyleGAN-generated synthetic images used for EmbedAIDetect proto-
type evaluation

AI-generated images, and (2) 140k Real and Fake Faces [112], which contains high-resolution
facial images. The goal was to evaluate how accurately the system could classify input images
as AI-generated or real based on similarity to pre-stored embeddings using cosine distance.
The system was tested using Python scripts that emulated the classification flow of the
application, including embedding computation, vector similarity querying, and prediction
logging. Results were saved in CSV format with fields such as filename, true label, similarity
scores, and predicted label. A snippet of this output is shown below:

filename,true_label,human_similarity,ai_similarity,predicted_label

0375 (7).jpg,real,0.2266,0.1677,real

0838 (7).jpg,real,0.2846,0.2476,real

0174 (5).jpg,real,0.4529,0.5668,fake

0445 (3).jpg,real,0.1606,0.1622,fake

0771 (9).jpg,real,0.2502,0.3689,fake

We then computed standard classification metrics such as accuracy, precision, recall, and
F1-score, along with confusion matrices, to assess how the system performed across both
facial and non-facial image categories.

Quantitative Results and Observations

On the CIFAKE dataset, which contains objects, scenes, and non-facial artwork, the system
showed balanced performance. As shown in Figure 5.4a, it correctly classified 6,194 out
of 10,000 real images and 4,792 out of 10,000 fake images. While not highly accurate, the
results indicate that the model can reasonably distinguish between AI-generated and real
content in general image categories where visual patterns are more distinct and less uniform.

In contrast, the evaluation on the 140k Real and Fake Faces dataset highlighted significant
limitations. As shown in Figure 5.4b, the system correctly labeled most real facial images
(9,452 out of 10,000), but misclassified nearly all fake faces: only 236 were correctly identified
as AI-generated, while 9,764 were incorrectly predicted as real. This imbalance reflects
a strong bias toward labeling facial content as real, likely due to the embedding model’s

53

(a) Confusion matrix for CIFAKE dataset eval-
uated using Prototype 2

(b) Confusion matrix for 140k Real and Fake
Faces dataset evaluated using Prototype 2

Figure 5.4: Confusion matrices showing classification performance of Prototype 2 using
vector similarity search

inability to capture subtle generative artifacts present in StyleGAN outputs, especially when
those features overlap with realistic cues found in the CFD dataset.

These results reinforce a key insight: While embedding-based similarity is reasonably
effective for broad semantic differences (as seen in non-facial images), it falls short when
used to detect highly realistic facial forgeries. This gap directly influenced the decision to
incorporate blockchain-based verification in the hybrid prototype, with the aim of enhancing
confidence and trust in high-risk classifications.

5.2.3 Prototype 3: Hybrid Approach Evaluation

Prototype 3 combines the embedding-based similarity classification from Prototype 2 with
the blockchain verification mechanism from Prototype 1. As it does not introduce new
classification logic, but rather integrates existing components sequentially, first identifying
the closest match via vector similarity, then checking its hash on-chain, no separate evaluation
was conducted. Its behavior and performance characteristics are directly inherited from the
earlier prototypes. The primary goal of this version is to enhance trust and verifiability
in the results, especially in edge cases, by confirming that the matched embedding has an
immutable record on the blockchain. While not formally benchmarked, the hybrid workflow
was manually validated through the user interface and confirmed to operate as expected.

54

Chapter 6

Conclusion

The thesis research presents a novel concept of identifying and detecting AI-generated im-
ages. The findings suggest that despite extensive manipulations, the semantic meaning of
images remains similar to their original counterparts, allowing for identification. However,
the efficacy of this approach is inherently limited by the dataset used for embedding genera-
tion. Also, the widespread adoption of this system across big technology companies such as
OpenAI, Meta, and Google is crucial to ensuring its success. Standardization and a shared
database of vector embeddings are necessary because different embedding models produce
varying representations. Future work will focus on using IPFS to establish decentralized
image storage. By ensuring the integrity and accessibility of vector embeddings, such a
system could pave the way for a more robust and universally accepted AI image detection
framework. Ultimately, collaboration across the industry will be vital in creating a scal-
able, transparent, and effective solution for combating the challenges posed by AI-generated
media.

6.1 Limitations

This thesis, while contributing valuable insights, has several limitations.

• The model’s performance was constrained by the size and diversity of the training
dataset, which may not fully represent the range of evolving tampering techniques,
affecting generalization to novel manipulations.

• Computational limitations restricted exploration of more complex deep learning mod-
els, potentially capping detection performance.

• Evaluation under controlled conditions may not reflect real-world environments, where
compression, manual tampering, and platform distortions can affect accuracy.

• Reliance on visual features alone, without multimodal analysis like metadata or forensic
traces, limits detection of sophisticated forgeries such as GAN-generated images and
deepfakes.

• Finally, biases in the design of the data set, the selection of algorithms and the evalu-
ation may have subtly influenced the results despite validation efforts.

55

6.2 Future Work

Some of the possible future research work and improvements are discussed below:

• Future work involves making the model and system more robust by incorporating more
varied datasets and focusing on training and testing models directly instead of relying
solely on pre-trained models.

• Another direction is to add explainability and interpretability by displaying the sys-
tem’s source data, clearly illustrating why an image was flagged as AI-generated or
human-created.

• A scalable solution for image provenance is required, as the storage limitations and in-
creasing costs associated with smart contract-based hash verification present challenges
as the number of stored hashes grows.

• Future improvements should consider leveraging PRNU analysis and associated meta-
data like EXIF data, to further enhance classification accuracy.

56

Appendix A

Smart Contracts

This chapter includes the smart contracts used in the EmbedDetect system.

A.1 Smart Contract for AI Image Embedding Hash

The following smart contract is responsible for storing and verifying AI-generated image
hashes using a dynamic array on the blockchain.

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract HashStorageAI {

5 // Dynamic array to store hashes as uint256

6 uint256[] private ai_hash_list;

7

8 // Event to emit when a new hash is stored

9 event HashStored(uint256 hash, uint256 hash_list_len);

10

11 // Function to store a single hash

12 function storeHash(uint256 _hash) public {

13 ai_hash_list.push(_hash);

14 emit HashStored(_hash, ai_hash_list.length);

15 }

16

17 // Function to get total number of hashes stored

18 function getTotalHashes() public view returns (uint256) {

19 return ai_hash_list.length;

20 }

21

22 function hashExists(uint256 _hash) public view returns (bool) {

23 for (uint256 i = 0; i < ai_hash_list.length; i++) {

24 if (ai_hash_list[i] == _hash) {

25 return true;

26 }

27 }

28 return false;

57

29 }

30 }

A.2 Smart Contract for Human-created Image Em-

bedding Hash

The following contract is responsible for storing and verifying hashes associated with human-
created images.

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract HashStorageHuman {

5 // Dynamic array to store hashes as uint256

6 uint256[] private human_hash_list;

7

8 // Event to emit when a new hash is stored

9 event HashStored(uint256 hash, uint256 hash_list_len);

10

11 // Function to store a single hash

12 function storeHash(uint256 _hash) public {

13 human_hash_list.push(_hash);

14 emit HashStored(_hash, human_hash_list.length);

15 }

16

17 // Function to get total number of hashes stored

18 function getTotalHashes() public view returns (uint256) {

19 return human_hash_list.length;

20 }

21

22 function hashExists(uint256 _hash) public view returns (bool) {

23 for (uint256 i = 0; i < human_hash_list.length; i++) {

24 if (human_hash_list[i] == _hash) {

25 return true;

26 }

27 }

28 return false;

29 }

30 }

58

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

[2] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion prob-
abilistic models. In International conference on machine learning, pages 8162–8171.
PMLR, 2021.

[3] Staphord Bengesi, Hoda El-Sayed, Md Kamruzzaman Sarker, Yao Houkpati, John
Irungu, and Timothy Oladunni. Advancements in generative ai: A comprehensive
review of gans, gpt, autoencoders, diffusion model, and transformers. IEEE Access,
2024.

[4] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International
conference on machine learning, pages 8821–8831. Pmlr, 2021.

[5] Zach Winn. Pushing the frontiers of art and technology with generative ai. https://
news.mit.edu/2023/pushing-frontiers-art-technology-generative-ai-1129,
2023. Accessed: June 9, 2024.

[6] S. Mitra Kalita and Anand Iyer. How generative ai could disrupt creative work.
https://hbr.org/2023/04/how-generative-ai-could-disrupt-creative-work,
2023. Accessed: June 9, 2024.

[7] Abhijeeth Madhu. Survey reveals 9 out of 10 artists believe current copyright laws are
outdated in the age of generative ai technology. https://bookanartist.co/blog/

2023-artists-survey-on-ai-technology/, 2023. Accessed: June 9, 2024.

[8] Kevin Roose. An a.i.-generated picture won an art prize. artists
aren’t happy. https://www.nytimes.com/2022/09/02/technology/

ai-artificial-intelligence-artists.html, 2022. Accessed: June 9, 2024.

[9] PBS NewsHour. Fake ai images of putin, trump being ar-
rested spread online. https://www.pbs.org/newshour/politics/

fake-ai-images-of-putin-trump-being-arrested-spread-online, 2023. Ac-
cessed: June 9, 2024.

59

https://news.mit.edu/2023/pushing-frontiers-art-technology-generative-ai-1129
https://news.mit.edu/2023/pushing-frontiers-art-technology-generative-ai-1129
https://hbr.org/2023/04/how-generative-ai-could-disrupt-creative-work
https://bookanartist.co/blog/2023-artists-survey-on-ai-technology/
https://bookanartist.co/blog/2023-artists-survey-on-ai-technology/
https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html
https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html
https://www.pbs.org/newshour/politics/fake-ai-images-of-putin-trump-being-arrested-spread-online
https://www.pbs.org/newshour/politics/fake-ai-images-of-putin-trump-being-arrested-spread-online

[10] Neha Sandotra and Bhavna Arora. A comprehensive evaluation of feature-based ai
techniques for deepfake detection. Neural Computing and Applications, 36(8):3859–
3887, 2024.

[11] Zhengyuan Jiang, Jinghuai Zhang, and Neil Zhenqiang Gong. Evading watermark
based detection of ai-generated content. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, pages 1168–1181, 2023.

[12] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[13] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25, 2012.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-
vances in neural information processing systems, 27, 2014.

[19] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[20] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

60

[23] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[25] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27, 2014.

[27] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Machine learning for
data science handbook: data mining and knowledge discovery handbook, pages 353–374,
2023.

[28] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[29] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[30] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

[31] George Lawton. What is generative ai? everything you need to know. https://

www.techtarget.com/searchenterpriseai/definition/generative-AI, 2023. Ac-
cessed: June 9, 2024.

[32] Kim Martineau. What is generative ai? https://research.ibm.com/blog/

what-is-generative-AI, 2023. Accessed: June 9, 2024.

[33] OpenAI. Dall·e: Creating images from text. https://openai.com/index/dall-e/,
2021. Accessed: June 9, 2024.

[34] OpenAI. Chatgpt. https://openai.com/index/chatgpt/, 2023. Accessed: June 9,
2024.

[35] Pandu Nayak. Mum: A new ai milestone for understanding information. https:

//blog.google/products/search/introducing-mum/, 2021. Accessed: June 9, 2024.

61

https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://research.ibm.com/blog/what-is-generative-AI
https://research.ibm.com/blog/what-is-generative-AI
https://openai.com/index/dall-e/
https://openai.com/index/chatgpt/
https://blog.google/products/search/introducing-mum/
https://blog.google/products/search/introducing-mum/

[36] OpenAI. Gpt-4. https://openai.com/index/gpt-4-research/, 2023. Accessed:
June 9, 2024.

[37] Demis Hassabis and Sundar Pichai. Introducing gemini: Google’s most capable ai
model yet. https://blog.google/technology/ai/google-gemini-ai/, 2023. Ac-
cessed: June 9, 2024.

[38] Yusuf Mehdi. Reinventing search with a new ai-powered microsoft bing and
edge, your copilot for the web. https://blogs.microsoft.com/blog/2023/02/07/

reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/,
2023. Accessed: June 9, 2024.

[39] Youssef Hosni. Comprehensive introduction to ai image generation, 2023. Accessed on
June 5, 2024.

[40] AltexSoft. Generative ai: How ai image generators work. https://www.altexsoft.

com/blog/ai-image-generation/, 2023. Accessed: June 2024.

[41] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, and OpenAI. Dall·e: Cre-
ating images from text, 2021. Accessed on June 5, 2024.

[42] Alex McFarland. Beginner’s guide to ai image generators, 2023. Accessed on June 5,
2024.

[43] Chester Avey. Ethics of ai image generation, December 2023. Accessed on June 5,
2024.

[44] AI or Not. How can ai-generation photos harm each of us, 2023. Accessed on June 5,
2024.

[45] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 4401–4410, 2019.

[46] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high
fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[47] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–1134, 2017.

[48] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative adversarial network. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4681–4690, 2017.

62

https://openai.com/index/gpt-4-research/
https://blog.google/technology/ai/google-gemini-ai/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://www.altexsoft.com/blog/ai-image-generation/
https://www.altexsoft.com/blog/ai-image-generation/

[49] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In International conference on machine learning, pages 1747–1756.
PMLR, 2016.

[50] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An
improved autoregressive generative model. In International conference on machine
learning, pages 864–872. PMLR, 2018.

[51] Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale
pixel networks and multidimensional upscaling. arXiv preprint arXiv:1812.01608, 2018.

[52] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic
style. arXiv preprint arXiv:1508.06576, 2015.

[53] Aston Zhang, Zack C. Lipton, Mu Li, and Alex J. Smola. Neural style transfer, 2020.
Accessed on June 9, 2024.

[54] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14,
pages 694–711. Springer, 2016.

[55] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive in-
stance normalization. In Proceedings of the IEEE international conference on computer
vision, pages 1501–1510, 2017.

[56] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.

[57] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the
data distribution. Advances in neural information processing systems, 32, 2019.

[58] Hugging Face. Diffuse the rest. https://huggingface.co/spaces/

huggingface-projects/diffuse-the-rest, 2023. Accessed: June 9, 2024.

[59] Emad Mostaque. Tweet by emad mostaque. https://x.com/EMostaque/status/

1587844074064822274?lang=en&mx=2, 2022. Accessed: June 9, 2024.

[60] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. Stable diffusion. https://github.com/CompVis/stable-diffusion, 2022. Ac-
cessed: June 9, 2024.

[61] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022.

63

https://huggingface.co/spaces/huggingface-projects/diffuse-the-rest
https://huggingface.co/spaces/huggingface-projects/diffuse-the-rest
https://x.com/EMostaque/status/1587844074064822274?lang=en&mx=2
https://x.com/EMostaque/status/1587844074064822274?lang=en&mx=2
https://github.com/CompVis/stable-diffusion

[62] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller,
Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rec-
tified flow transformers for high-resolution image synthesis. In Forty-first International
Conference on Machine Learning, 2024.

[63] Wikipedia. Stable diffusion. https://en.wikipedia.org/wiki/Stable_Diffusion,
2024. Accessed: June 9, 2024.

[64] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In International Conference on Learning
Representations, 2013.

[65] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[66] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[67] Diego Gragnaniello, Francesco Marra, and Luisa Verdoliva. Detection of ai-generated
synthetic faces. In Handbook of digital face manipulation and detection: From deepfakes
to morphing attacks, pages 191–212. Springer International Publishing Cham, 2022.

[68] Zhiyuan He, Pin-Yu Chen, and Tsung-Yi Ho. Rigid: A training-free and
model-agnostic framework for robust ai-generated image detection. arXiv preprint
arXiv:2405.20112, 2024.

[69] Zihan Liu, Hanyi Wang, Yaoyu Kang, and Shilin Wang. Mixture of low-rank experts
for transferable ai-generated image detection. arXiv preprint arXiv:2404.04883, 2024.

[70] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng.
Bull., 24(4):35–43, 2001.

[71] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu
Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao
Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo, Jun Gu, Ruiyi
Jiang, Yi Wei, and Charles Xie. Milvus: A purpose-built vector data management
system. In Proceedings of the 2021 International Conference on Management of Data,
SIGMOD ’21, page 2614–2627, New York, NY, USA, 2021. Association for Computing
Machinery.

[72] Artem Babenko Yandex and Victor Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2055–2063, 2016.

64

https://en.wikipedia.org/wiki/Stable_Diffusion

[73] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason Li,
Chuanjie Liu, Lintao Zhang, and Jingdong Wang. Sptag: A library for fast approximate
nearest neighbor search, 2018.

[74] Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach, Kostas
Rakopoulos, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan, Daniel Zilio,
et al. Db2 event store: a purpose-built iot database engine. Proceedings of the VLDB
Endowment, 13(12):3299–3312, 2020.

[75] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[76] Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system. Bitcoin.–
URL: https://bitcoin. org/bitcoin. pdf, 4(2):15, 2008.

[77] Ethereum Foundation. Introduction to ethereum. https://ethereum.org/en/

developers/docs/intro-to-ethereum/, 2024. Accessed: April 4, 2025.

[78] Nick Szabo. Smart contracts. https://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.

vwh.net/smart.contracts.html, 1994. Accessed April 20, 2025.

[79] Solidity Team. Solidity v0.8.25 documentation. https://docs.soliditylang.org/

en/v0.8.25/, 2024. Released March 14, 2024. Accessed April 20, 2025.

[80] Ethereum Foundation. Gas and fees: Technical overview. https://ethereum.org/

en/developers/docs/gas/, 2025. Last updated February 25, 2025. Accessed April
20, 2025.

[81] Wikipedia contributors. Cryptocurrency wallet. https://en.wikipedia.org/wiki/

Cryptocurrency_wallet, 2025. Accessed April 20, 2025.

[82] Consensys Software Inc. Metamask: The leading crypto wallet platform. https:

//metamask.io/, 2025. Accessed April 20, 2025.

[83] Suvarna Sharma, Puneeta Rosmin, and Amit Bhagat. Blockchain technology: Lim-
itations and future possibilities. In Blockchain Applications in IoT Security, pages
140–151. IGI Global, 2021.

[84] Pablo Pernias, Dominic Rampas, Mats L. Richter, Christopher J. Pal, and Marc Aubre-
ville. Wuerstchen: An efficient architecture for large-scale text-to-image diffusion mod-
els, 2023.

[85] Jinhyeok Jang, Chan-Hyun Youn, Minsu Jeon, and Changha Lee. Rethinking peculiar
images by diffusion models: Revealing local minima’s role. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 2454–2461, 2024.

65

https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://docs.soliditylang.org/en/v0.8.25/
https://docs.soliditylang.org/en/v0.8.25/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://en.wikipedia.org/wiki/Cryptocurrency_wallet
https://en.wikipedia.org/wiki/Cryptocurrency_wallet
https://metamask.io/
https://metamask.io/

[86] Allan Kouidri. Top ai diffusion models: Ultimate comparison & guide [2024], 2024.
Accessed on June 9, 2024.

[87] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthe-
sis. Advances in neural information processing systems, 34:8780–8794, 2021.

[88] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi,
and Tim Salimans. Cascaded diffusion models for high fidelity image generation. Jour-
nal of Machine Learning Research, 23(47):1–33, 2022.

[89] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-
to-image diffusion models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3836–3847, 2023.

[90] William Peebles and Saining Xie. Scalable diffusion models with transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4195–4205, 2023.

[91] Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano, and
Luisa Verdoliva. On the detection of synthetic images generated by diffusion models.
In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE, 2023.

[92] Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors
that generalize across generative models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 24480–24489, 2023.

[93] Muhammad Asad Arshed, Ayed Alwadain, Rao Faizan Ali, Shahzad Mumtaz, Muham-
mad Ibrahim, and Amgad Muneer. Unmasking deception: Empowering deepfake de-
tection with vision transformer network. Mathematics, 11(17):3710, 2023.

[94] Yan Ju, Shan Jia, Jialing Cai, Haiying Guan, and Siwei Lyu. Glff: Global and local
feature fusion for ai-synthesized image detection. IEEE Transactions on Multimedia,
2023.

[95] Samah S Baraheem and Tam V Nguyen. Ai vs. ai: Can ai detect ai-generated images?
Journal of Imaging, 9(10):199, 2023.

[96] Fernando Martin-Rodriguez, Rocio Garcia-Mojon, and Monica Fernandez-Barciela.
Detection of ai-created images using pixel-wise feature extraction and convolutional
neural networks. Sensors, 23(22):9037, 2023.

[97] Ziyi Xi, Wenmin Huang, Kangkang Wei, Weiqi Luo, and Peijia Zheng. Ai-generated
image detection using a cross-attention enhanced dual-stream network. In 2023 Asia
Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), pages 1463–1470. IEEE, 2023.

66

[98] Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy
Furon. The stable signature: Rooting watermarks in latent diffusion models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
22466–22477, 2023.

[99] Jordan J Bird and Ahmad Lotfi. Cifake: Image classification and explainable identifi-
cation of ai-generated synthetic images. IEEE Access, 2024.

[100] Muhammad Asad Arshed, Shahzad Mumtaz, Muhammad Ibrahim, Christine Dewi,
Muhammad Tanveer, and Saeed Ahmed. Multiclass ai-generated deepfake face detec-
tion using patch-wise deep learning model. Computers, 13(1):31, 2024.

[101] Jiaxuan Chen, Jieteng Yao, and Li Niu. A single simple patch is all you need for
ai-generated image detection. arXiv preprint arXiv:2402.01123, 2024.

[102] Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li,
Zhijun Tu, Hailin Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark
for detecting ai-generated image. Advances in Neural Information Processing Systems,
36, 2024.

[103] Yanhao Li, Quentin Bammey, Marina Gardella, Tina Nikoukhah, Jean-Michel Morel,
Miguel Colom, and Rafael Grompone Von Gioi. Masksim: Detection of synthetic
images by masked spectrum similarity analysis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3855–3865, 2024.

[104] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang,
Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu,
Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.
Dinov2: Learning robust visual features without supervision, 2024.

[105] Pinecone Systems, Inc. What is a vector database? https://www.pinecone.io/

learn/vector-database/, 2025. Accessed April 20, 2025.

[106] Chroma Documentation Team. Introduction to chroma. https://docs.trychroma.

com/docs/overview/introduction, 2025. Accessed April 20, 2025.

[107] Dhiraj Nallapaneni. Solana vs. ethereum: Investor’s guide 2025. https://

coinledger.io/tools/solana-vs-ethereum, 2025. Accessed April 20, 2025.

[108] Debbie S. Ma, Joshua Correll, and Bernd Wittenbrink. The Chicago Face Database: A
Free Stimulus Set of Faces and Norming Data. Behavior Research Methods, 47:1122–
1135, 2015.

[109] Debbie S. Ma, Justin Kantner, and Bernd Wittenbrink. Chicago Face Database: Mul-
tiracial Expansion. Behavior Research Methods, 2020.

67

https://www.pinecone.io/learn/vector-database/
https://www.pinecone.io/learn/vector-database/
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://coinledger.io/tools/solana-vs-ethereum
https://coinledger.io/tools/solana-vs-ethereum

[110] Pooja Lakshmi, Bernd Wittenbrink, Joshua Correll, and Debbie S. Ma. The india face
set: International and cultural boundaries impact face impressions and perceptions of
category membership. Frontiers in Psychology, 12:161, 2020.

[111] Felix Birdy. Cifake: Real and ai-generated synthetic images. https://www.kaggle.

com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images,
2023. Accessed: 2025-07-02.

[112] Xin Huang. 140k real and fake faces. https://www.kaggle.com/datasets/xhlulu/

140k-real-and-fake-faces, 2021. Accessed: 2025-07-02.

68

https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images
https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-synthetic-images
https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces
https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces

	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Open Challenges
	Proposed System
	Contributions
	Results

	Background & Related Work
	Neural Networks
	Deep Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks (CNNs)
	Transformers

	Generative AI
	AI-Generated Images

	Image Generation Models
	Generative Adversarial Networks (GANs)
	Autoregressive Models
	Neural Style Transfer (NST)
	Diffusion Models (DMs)

	Image Analysis Techniques
	Embedding
	Embedding Models
	Image Similarity
	Vector Database

	Blockchain Technology
	Ethereum Network
	Smart Contracts
	Programming Languages
	Gas Fees
	Decentralized Applications (DApps)
	Crypto Wallets
	Limitations of Blockchain Technology

	Related Work

	EmbedAIDetect System Design
	Embedding Model
	Vector Database
	Blockchain
	Web App
	User Story

	Prototype Implementation
	Prototype 1: Blockchain only
	Prototype 2: Database only
	Prototype 3: Hybrid Approach
	Components Development
	Embedding Model
	Embeddings Storage Setup
	Smart Contract Setup
	User Interface

	Results and Evaluation
	Experimental Design
	Vector similarity based classification
	Benchmarking different embedding models
	Smart Contract Gas Usage Estimation

	Prototype Evaluation
	Prototype 1: Blockchain only Evaluation
	Prototype 2: Database only Evaluation
	Prototype 3: Hybrid Approach Evaluation

	Conclusion
	Limitations
	Future Work

	Smart Contracts
	Smart Contract for AI Image Embedding Hash
	Smart Contract for Human-created Image Embedding Hash

	References

