
ABSTRACT

NEURAL NETWORK-BASED CROSSFIRE ATTACK DETECTION IN SDN-ENABLED
CELLULAR NETWORKS

by Nicholas Perry

In today’s networked world, cybersecurity threats pose a significant challenge to the integrity and
reliability of communication networks. One such threat is the crossfire attack, where adversaries
exploit network vulnerabilities by injecting malicious packets into traffic flows. To address this, we
present a novel crossfire detection scheme that solely inspects packet headers, reducing the compu-
tational overhead associated with packet inspection. Our proposed detection scheme includes both
analysis of variance (ANOVA) and neural networks to identify anomalous packet behaviors indica-
tive of crossfire attacks. To evaluate the effectiveness of our approach, we conducted experiments
on a real ATT backbone topology, simulating a crossfire attack in the Mininet simulation environ-
ment. The results demonstrate that our detection scheme achieves an accuracy of 95.3% in detecting
adversarial packets, effectively mitigating the crossfire threat. Furthermore, we introduce a traf-
fic optimization model to adapt routing decisions in response to crossfire or link flooding attacks.
Leveraging the detection scheme’s real-time analysis, our optimization model dynamically alters
routing paths to minimize the impact of attacks on network performance. Overall, our research
presents an innovative and comprehensive framework that combines efficient crossfire detection
using packet headers, high-accuracy detection using ANOVA and neural networks, and an adaptive
traffic optimization model.



NEURAL NETWORK-BASED CROSSFIRE ATTACK DETECTION IN SDN-ENABLED

CELLULAR NETWORKS

A Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Science

by

Nicholas Perry

Miami University

Oxford, Ohio

2023

Advisor: Dr. Suman Bhunia

Reader: Dr. Vaskar Raychoudhary

Reader: Dr. Daniela Inclezan

©2023 Nicholas Perry



This Thesis titled

NEURAL NETWORK-BASED CROSSFIRE ATTACK DETECTION IN SDN-ENABLED

CELLULAR NETWORKS

by

Nicholas Perry

has been approved for publication by

The College of Engineering and Computing

and

The Department of Computer Science & Software Engineering

Dr. Suman Bhunia

Dr. Vaskar Raychoudhary

Dr. Daniela Inclezan



Table of Contents

List of Tables v

List of Figures vi

Acknowledgements vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Crossfire Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Summary of Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background & Related Work 5
2.1 5G/6G Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Security Concerns in 5G/6G . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Mobile Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Software Defined Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 SDN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Concerns and Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Denial of Service Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Traditional Denial of Service Attacks . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Link Flooding Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Crossfire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 MTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Rerouting-Based Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Infeasibility of Current Mitigation Techniques . . . . . . . . . . . . . . . . 19
2.4.4 Current Detection Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



3 Crossfire Avoidance Framework 21
3.1 Execution of a Crossfire Attack on an SDN . . . . . . . . . . . . . . . . . . . . . 21
3.2 Detection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Traffic Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Testbed Development 27
4.1 Mininet Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Ryu SDN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Gurobi Optimization Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Experiment & Results 38
5.1 Executing a Crossfire Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Simulation Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Attack Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Detecting a Crossfire Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Classifying Adversarial Traffic . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Optimizing Traffic using Binary Linear Program . . . . . . . . . . . . . . . . . . 46
5.3.1 Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion & Future Work 52

A Networking Scripts 55
A.1 Auto Network Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Mininet Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 58

iv



List of Tables

2.1 OSI Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Industry Concerns with SDNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Security Vulnerabilities and Threats in Software Defined Networks . . . . . . . . . 14
2.4 Types of LFA Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Tools used in Simulation and their version . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Initial ANOVA Full Model Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Initial ANOVA Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Revised ANOVA Full Model Test . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Revised ANOVA Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Confusion Matrix for Training Data for 1× 3 neural network . . . . . . . . . . . . 45
5.7 Confusion Matrix for Validation Data for 1× 3 neural network . . . . . . . . . . . 45
5.8 Confusion Matrix for Training Data with 2× 25 neural network . . . . . . . . . . 45
5.9 Confusion Matrix for Validation Data with 2× 25 neural network . . . . . . . . . 45
5.10 Traffic Demands by Network Scenario . . . . . . . . . . . . . . . . . . . . . . . . 50

v



List of Figures

1.1 Proposed Crossfire Defense Mechanism . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Research Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The 4 Layer IoT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 SDN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 MiniEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Execution of a DDoS Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Execution of the Crossfire Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Sample Execution Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Training Methodology for Binary Linear Programming . . . . . . . . . . . . . . . 25

5.1 Test Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Average Ping Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Neural Network Diagrams Using Hyperbolic Tangent Nodes . . . . . . . . . . . . 45
5.4 Sample Gurobi Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Network Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



Acknowledgements

I would like to express my heartfelt gratitude to my esteemed committee members, Dr. Bhunia, Dr.
Raychoudhary, and Dr. Inclezan, for their invaluable guidance and unwavering support throughout
the course of my thesis project. Their expertise, insightful feedback, and encouragement have been
instrumental in shaping the outcome of this research endeavor.

In particular, I would like to extend a special thanks to Dr. Bhunia for his exceptional role as
my advisor. Despite the demands of teaching classes and assisting other advisees, Dr. Bhunia has
been an indispensable part of this project. His dedication, patience, and willingness to share his
knowledge have not only helped me navigate the complexities of research but also enabled me to
develop crucial skills in the field. I am truly grateful for his mentorship and the valuable lessons
he imparted.

I would also like to recognize Dr. Salman for his invaluable assistance as an external research
advisor. His expertise in machine learning, traffic optimization, and Gurobi had a profound impact
on the quality and outcomes of this thesis. His guidance and insights were invaluable in shaping
the direction of my research and enhancing the overall depth of the project.

I am also grateful for my friends, classmates, and the entire academic community for providing
me with an environment conducive to learning and growth. The resources and opportunities made
available to me have been pivotal in the successful completion of this thesis.

Last but certainly not least, I want to extend my deepest gratitude to my parents, Jim and Lynn,
and my siblings, Olivia and Lauren. Their unwavering support and boundless love have been
an incredible source of strength and encouragement throughout this challenging journey. Their
continued belief in my abilities has been a constant source of motivation, pushing me to overcome
obstacles and strive for excellence.

To everyone who has played a part, big or small, in the realization of this thesis project, I extend
my heartfelt thanks. Your contributions have been invaluable, and I am truly honored and grateful
for your support.

vii



Chapter 1

Introduction

As the internet continues to evolve and become more essential to daily lives than ever, there is
a growing population looking to destroy it. Denial of service (DoS) attacks have been a threat
to the internet for years and continue to cause issues even in today’s networks. The continued
improvement and introduction of internet-of-things (IoT) devices have pushed mobile carriers to
update their existing infrastructure to support the increased number of devices. Due to the increased
load on the network, a focus onMobile Edge Computing (MEC) has increased. TheseMEC servers
keep data from going across the center of the network and instead process the data near the edge of
the network. A newer type of DoS attack, known as the crossfire attack has plagued the internet.
This type of attack is extremely difficult to detect and can be lethal to networks if executed correctly.
Software-defined networks (SDNs) have been discussed as a promising mitigation technology that
could detect DoS attacks. While SDNs are helpful, they are not perfect and open up a different set
of vulnerabilities to exploit. The end of DDoS attacks is not in sight, and therefore many different
approaches must be taken to protect critical servers.

About 25 billion devices are currently interconnected and by 2025, 60 billion devices are ex-
pected to be connected [1]. As the Internet continues to develop, traditional devices are becoming
“smart”, meaning that they are connected to the Internet. The term “Internet of Things”(IoT) was
coined in 1999 by Kevin Ashton which describes a global network of interconnected devices [1].
The motivation for IoT devices is to create large “smart” systems [2]. Technological advancements
are the reason for the increased motivation to link devices together [1]. IoT devices take many
forms and almost any traditional device can be converted to a smart device. Some examples of IoT
devices include smart plugs, smart washing machines, smart lights, smart refrigerators, etc.

The crossfire attack is a type of DoS attack that is more difficult to detect. This attack uses
many devices across large geographic regions to send low-intensity requests across the network to
various servers on the other side of the network. This is especially problematic with the advent of
IoT and IoMT, because even though these devices often have extremely limited processing power,
these devices can be compromised and used since the attack only requires low-intensity attacks to
be sent from any given device.

1.1 Motivation
Denial of Service attacks are a recurring issue in the world of networks. The first distributed denial
of service attack took place in 1999, and over twenty years later, DoS and DDoS attacks are still a
large threat. With an increase of internet-of-things devices, availability attacks using botnets have
become common. An effective way to detect and mitigate such attacks is imperative as the internet
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becomes even more of a critical infrastructure than it already is. Many essential institutions rely
on having available servers such as hospitals, banks, law enforcement, and government. If servers
were compromised and made unavailable, the consequences could be severe. Being able to detect
these attacks is the first step to combating them. Without a novel detection scheme, crossfire attacks
and similar link-flooding attacks will continue to be lethal.

1.2 Proposed Crossfire Avoidance
Our proposed crossfire avoidance framework involves the process of discerning patterns within
collected data to effectively differentiate between malicious attack traffic and legitimate network
activity. Various techniques and statistical tests are employed to uncover unique characteristics
associated with attack traffic, enabling the development of novel defense mechanisms. Further-
more, network optimization plays a crucial role in enhancing overall network performance and
resilience. To achieve this, a deep learning optimization library is utilized to augment network
bandwidth throughout the entire network infrastructure. By leveraging network topology, the opti-
mization library generates diverse network scenarios, particularly in Software-Defined Networking
(SDN) frameworks.

Since crossfire attacks are so lethal, it is important to detect when they are occurring as soon as
possible. Therefore, using a software-defined network (SDN) is ideal so that a holistic view of the
network can be obtained. The use of SDN is proposed as an ideal approach to obtain a holistic view
of the network. In an SDN, the control plane is decoupled from the data plane, allowing centralized
control and management of the network. The SDN architecture consists of OpenFlow switches that
forward network traffic based on instructions received from the SDN controller. Each OpenFlow
switch in the network reports the packet headers of incoming packets to the SDN controller. Packet
headers contain important information such as source and destination IP addresses, transport pro-
tocol, port numbers, etc. By inspecting these headers, the SDN controller can gain visibility into
the network and analyze the characteristics of the packets flowing through it. To defend against
crossfire attacks, a traffic classification model is proposed to determine whether a packet is adver-
sarial (part of the attack) or benign. This model is implemented on the SDN controller. It leverages
machine learning or rule-based techniques to analyze the packet headers and make an informed de-
cision about the nature of the packet. The SDN controller sends the packet headers to a cloud-based
IDS for further analysis. The IDS hosts the proposed traffic classification model, which evaluates
the received packet headers and determines if they correspond to an adversarial or benign packet.
The IDS is equipped with computational resources and advanced analysis techniques to perform
this task effectively. Once the IDS determines a packet is adversarial, the SDN controller instructs
the respective OpenFlow switch to drop the offending packet(s) from the processing pipeline. By
discarding the malicious packets, congestion on the network can be reduced, preventing the cross-
fire attack from spreading further. In summary, this defense mechanism combines the capabilities
of SDN, packet header inspection, a traffic classification model, and a cloud-based IDS to detect
and mitigate crossfire attacks. By inspecting packet headers, identifying adversarial packets, and
dropping them in real time, the mechanism helps protect the network from the detrimental effects of
crossfire attacks, minimizing potential damage and maintaining network performance. Figure 1.1
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Figure 1.1: Proposed Crossfire Defense Mechanism

details the mechanism.Packets are sent between the switches. When these packets are sent, info is
sent to the SDN controller, which forwards the headers to a cloud-based intrusion detection system
(IDS) that has implemented our proposed model. The IDS then sends back a threat assessment of
the specific packet. If the assessment returns an adversarial result, the resulting packet is blocked.
Otherwise, the packet is permitted to continue propagating.

1.3 Summary of Novelty
The summary of contributions are:

• The thesis proposes a statistical detection model for crossfire attacks using Analysis of Vari-
ance (ANOVA) and neural networks.

• The proposed mechanism only uses packet headers and not packet content to determine if a
packet is adversarial that achieves an accuracy of 95.3% in detecting these packets

3



• We evaluated the proposed defense mechanism on a real-world network topology from the
ATT North America backbone topology using the Mininet simulation environment

• We design a traffic optimization using Binary Linear Programming for SDN.

4



Chapter 2
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Figure 2.1: Research Area

2.1 5G/6G Architecture
Until recently, mobile communication was handled by fourth-generation (4G) and Long Term Evo-
lution (LTE) systems. Recently with the rise of Internet of Things (IoT) devices and a larger focus
on edge computing, a new standard had to be created in order to support the rapidly growing Inter-
net. Fifth-generation technology (5G) is the next standard of mobile communication that will be
able to support such a wide variety of devices simultaneously. 5G services are attempting to meet
3 main constraints as it develops: ubiquitous connectivity, zero latency, and high-speed gigabit
connection [3].

2.1.1 Network Architecture
As the number ofmobile devices exponentially increases, there is a need for an architecture redesign
from the previous generation. Differences in the waves used for 5G that permit increased speed
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require careful consideration due to differences in propagation.
5G cellular network architecture is distinct from previous generations but retains many features

of those generations. A renewed focus on interior architecture is necessary. With 4G, an outdoor
base station had the ability to allow both inside and outside users to communicate. Due to the
constraints and changes in architecture, the shorter waves of 5G cannot penetrate walls as easily
[4]. Therefore, 5G architecture must consider distinct interior architecture to overcome the issue
of penetration-loss [5]. The use of multiple-input, multiple-output (MIMO) technology can help
reduce the burden of penetration loss.

Multiple-input, multiple-output (MIMO) is a technology that allows awireless network to trans-
mit and receive signals simultaneously over shared radio channels using many antennas [6]. Mas-
sive MIMO scales up this idea to larger proportions, though no concrete definition of what “mas-
sive” entails exists. Massive MIMO includes antennas both located on-site and distributed [5]. By
including interior antennas, inside users would only have to communicate with an interior access
point which reduces penetration loss [4]. This technology allows 5G to be more energy efficient,
allowing for the capacity to increase 10 times and increasing the efficiency of the energy radiated
by 100 times. Using massive MIMO also allows lower power components to be used which are
often cheaper to purchase [6]. Finally, using MIMO allows for the reduction of latency which helps
5G achieve a core goal of “zero latency”.

Table 2.1: OSI Layers

Layer # OSI Layer
7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

As with any other network, 5G is comprised of all 7 OSI layers. Table 2.1 shows the 7 OSI
layers in order from top to bottom. Layer 1, known as the physical layer describes the physical
medium in which packets transmit. They can take the forms of wires, fiber, and radio waves. The
data link layer is the second link in the OSI model. This layer provides access rules and protocols
for sharing the physical media. This layer also contains the media access control (MAC) address
which is unique for every physical device. The third layer, the network layer, provides a means
for open systems to communicate by establishing, maintaining, and terminating connections. The
network layer contains the Internet Protocol (IP) and establishes IP addresses. The transport layer is
the fourth layer in the OSI layer taxonomy. The transmission control protocol (TCP) is contained
within this layer. The transport layer is responsible for ensuring the integrity and reliability of
the data transmitted across the network. Layer 5, the session layer, allows for 2 communicating
presentation entities to communicate with one another. The presentation layer is the sixth layer.
This layer is responsible for packing and unpacking application data to get it ready for transport.
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Encryption, decryption, and graphic expansion occur in this layer. The final layer of the OSI model
is the application layer. End-user software that communicates on the network is present on this
layer. This layer is the highest abstraction of the network model and each application has a specific,
distinct purpose [7].

2.1.2 Internet of Things
About 25 billion devices are currently interconnected and by 2025, 60 billion devices are expected
to be connected [1]. As the Internet continues to develop, traditional devices are becoming “smart”,
meaning that they are connected to the Internet. The term “Internet of Things” was coined in 1999
by Kevin Ashton that describes a global network of interconnected devices [1]. The motivation for
IoT devices is to create large “smart” systems [2]. Technological advancements are the reason for
the increased motivation to link devices together [1]. IoT devices take many forms and almost any
traditional device can be converted to a smart device. Some examples of IoT devices include smart
plugs, smart washing machines, smart lights, smart refrigerators, etc.
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Figure 2.2: The 4 Layer IoT Architecture

The Internet of Things has its own distinct architecture that works with the Internet. Typically
IoT is categorized into 4 layers. Figure 2.2 details the types of devices that are present on each
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layer. The perception layer is the lowest level of the IoT architecture. The perception layer contains
the sensor-enabled physical objects which act as endpoints to the IoT ecosystem. The next layer,
the network layer, consists of various communication protocols, edge computing, and network
connectivity. This layer transfers information securely from IoT endpoints to a processing device.
The middleware layer receives data from the network layer and stores it in a database. Cloud
computing servers and database management systems are typically middleware devices that allow
applications and sensors to connect. Finally, the top layer of the four-layer IoT architecture is
the application layer. This layer IoT exists as a result of many technologies. These technologies
work together to create a holistic system that is able to communicate across the internet. Radio
frequency identification (RFID) was a large precursor to IoT as it allowed machines to record
metadata, recognize objects, and control devices through radio waves [2]

IoT Devices may provide useful services, however, they currently present a large security prob-
lem in the world of networking. The first concern that arises with the introduction of IoT is that
creating additional devices that are addressable can allow attackers to intrude [2]. Security mea-
sures are only as good as the weakest link, and the introduction of new devices opens the door
to additional vulnerabilities that could be exploited by an adversary. Due to the low cost of IoT
devices, corners may be cut in terms of manufacturing. Oftentimes, IoT devices may use default
or anonymous logins which an adversary can use to intrude on a network [8].

2.1.3 Security Concerns in 5G/6G
5G is helping to connect the world by creating an ever-growing network. With the creation of
new software and architecture, both new and old vulnerabilities are concerning. With the increased
computational power of mobile devices, launching complicated attacks on a mobile network using
these devices is possible. These vulnerabilities extend across all 7 OSI Layers [9].

The application layer is vulnerable to attacks as applications have their own concerns due to
the way they were constructed. The presentation layer holds vulnerabilities such as hiding data by
using multimedia components. The session layer is vulnerable to man-in-the-middle attacks where
an adversary intercepts communication between 2 points and either sniffs or manipulates it before
passing it on to the intended party. In the transport layer, transport layer security is a channel to
execute DDoS attacks. While IPSec is unfeasible to break, the network layer is still vulnerable to
layer-agnostic attacks such as DoS and man-in-the-middle. The data link layer handles protocols
such as WiFi and Bluetooth. These protocols are vulnerable to password cracking and other types
of protocol attacks such as bluejacking. Finally, in the physical layer, vulnerabilities exist in wire-
less communication, as anyone with equipment can eavesdrop on the radio waves that are being
transmitted through the air. Each layer has its own vulnerability, and while it is virtually impossible
to patch every vulnerability, 5G will have to work to solve some of these issues to remain secure
enough for daily use [9].

2.1.4 Mobile Edge Computing
Mobile edge computing (MEC) is an architecture where cloud computing services are placed on
the edge of the network using mobile base stations [10]. With the ever-increasing need for cloud
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computing services while using mobile devices, placing computing servers within the radio access
network (RAN) and in close proximity to these devices allows mobile traffic to connect to the near-
est cloud service edge network. By placing MEC services within the RAN, bottlenecks associated
with traveling through the core of the internet can be reduced [10]. The European Telecommuni-
cations Standards Institute characterizes MEC by the following criteria: [11]

1. On-Premises - The edge services should be located at the edge of the network, meaning they
should be able to run isolated from the core of the network

2. Proximity - By being close to the source of the data/information, MEC is useful for analytics
and data collection

3. Lower Latency - By being closer to the edge devices, latency is considerably reduced. This
can be used to reduce latency or improve user experience.

4. Location Awareness - When connected to WiFi or cellular, services can use low-level sig-
naling to determine the location of connected devices.

5. Network Context Information - Real-time network statistics can be used by applications to
provide context-specific services that can be monetized and change the experience of mobile
communication.

Mobile edge computing can be used inmany sectors to offload core services. Augmented reality
(AR) systems typically require high computational power. Many users use (AR) on their mobile
devices, so computations have to be offloaded to servers. Edge computing would allow these high-
demand, low-latency tasks to remain at the edge of the network [10]. Edge computing also will
play a key role with respect to web performance and caching HTML content. By deploying content
delivery servers at the edge, HTTP requests would travel through these servers that would handle
many of these requests, reducing traffic across the core network [10]. MEC services allow 5G to
continue to work towards the core goal of “zero-latency” as reducing congestion in the core allows
more traffic to be routed. This in turn improves the experience for users of 5G technology.

2.2 Software Defined Networks
Traditional networks were built to enforce specific policies and implementations that are no longer
relevant due to the advanced nature of today’s devices [12]. Software-defined networks (SDNs)
are a newer type of network that separates the data plane from the control plane [13]. With the
control plane separated, network control and routing decisions can be centralized allowing them to
be more flexible and dynamic [14]. Software-defined networks are sometimes differently defined.
For this document, an SDN can be defined as a network architecture that has the following four
pillars: [13]

1. The control and data planes are separated. Control functionality is removed from network
hardware.
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2. Forwarding decisions are made with respect to flow instead of the destination.

3. Control logic is delegated to an external entity known as an SDN controller or NOS.

4. Network is programmable via software that runs on top of the NOS which interacts with the
data plane devices.

2.2.1 SDN Architecture
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Figure 2.3: SDN Architecture. [15]1

The architecture of software-defined networks can be broken into three layers: application
layer, control layer, and data layer. Figure 2.3 shows these layers, what types of devices reside
on each layer, and how each layer communicates with the others. The three layers of the SDN
architecture are independent but work together to route packets correctly.

The application layer contains the applications that make decisions about traffic. This layer
is the highest level of abstraction and the easiest to program on. The next layer is the control
layer which houses SDN controllers that contain the control logic about the network. The con-
trollers often run a network operating system (NOS) which contains various network services that
make decisions based on information received by the other two layers. The lowest layer, the data
layer contains the physical network devices such as routers and switches that are responsible for
forwarding the packets. Since SDN abstracts away the decision-making, these devices no longer

1Reproduced with permission from Springer Nature
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make decisions about where to forward packets and instead rely on the control layer to instruct
them [15].

The layers of SDN architecture communicate with each other using interfaces, known as the
northbound and southbound interfaces. The application layer communicates with the control layer
via the use of application programming interface (API) calls. These API calls can take many forms
including REST, JSON, and XML. This connection using APIs is called the “northbound interface”
since it connects the two northernmost layers. The control layer and data layer communicate with
each other through the use of the southbound interface. The southbound interface is a protocol
that shares routing information between the two layers. The most popular southbound interface
protocol is OpenFlow [15].

2.2.2 Technologies
Network function virtualization (NFV)was originally proposed by over twenty of the largest telecom-
munication operators. The term describes a network architecture that transforms how one builds
and operates a network by leveraging existing virtualization technology as well as consolidating
proprietary functions into standard devices [16]. The concept of NFV has created many new terms
to describe functions that are introduced. NFV is still very new however the virtualization technol-
ogy that backs it has been around for many years. NFV is important as it allows SDN devices to
communicate with virtualized devices, such as virtualized load balancers, firewalls, and network
address translators [17].

OpenFlow is a protocol that was proposed to standardize the way that switches and controllers
interact with each other in an SDN [18]. As mentioned previously this protocol has become the
most popular southbound interface protocol [15]. The OpenFlow architecture only requires three
main components: an OpenFlow-enabled switch, an external controller, and a secure channel for
both devices to communicate. A controller is a piece of software responsible for monitoring and
changing the flow tables of a switch using OpenFlow protocols. An OpenFlow-compliant switch
is a network switch that is capable of forwarding packets based on rules defined in a dynamic
flow table. Several OpenFlow-compliant switches exist and can be purchased with support for this
protocol out of the box [18]. OpenFlow switches have one or more tables of routing rules. These
flow tables match a subset of the traffic exchanged and perform actions on that traffic. Therefore,
an Open Flow switch can act like many devices, such as a router, a switch, a firewall, or a load
balancer [13]. Networks that are OpenFlow enabled had many additional capabilities. They are
able to control many switches from a single controller, they can analyze traffic information across
many nodes, and they can dynamically update forwarding information based on many factors [18].
OpenFlow allows for many types of applications to be created in order to maintain a network.
Some applications can make configuring network devices easier while others can manage the flows
of the network. Programs that provide security to the network can also take advantage of the
protocol. Programs that can detect, prevent, and mitigate DDoS attacks have been proposed due to
the additional control these programs have over the entire network [18]. This protocol has become
so versatile and associated with SDNs that the term “OpenFlow” and “SDN” are often interchanged.
OpenFlow has changed the network paradigm and enabled many features not seen before.

MiniNet is a network simulator capable of simulation software-defined, traditional, and hybrid
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Figure 2.4: MiniEdit, the Graphical User Interface for MiniNet

networks. MiniNet typically runs on a virtual machine and modifies the network adapters of the
virtual machine to mimic a network. Mininet supports the use of hosts, OpenFlow switches, legacy
switches, legacy routers, and controllers. Since OpenFlow is so dynamic, OpenFlow switches can
take the place of many network devices such as routers, switches, firewalls, and intrusion detection
systems. MiniNet uses OpenFlow as its southbound interface for SDN switches. MiniNet allows
the user to use terminal commands as a specific host, so commands like “iperf” can be used to
send packets from one host to another. Mininet also allows for simulation of real-world conditions.
Links can be forced down to simulate a crash. Additionally, links can be programmed to lose
packets a certain percentage of the time, and delay can be programmed in too. By allowing for
real-world conditions, a researcher is able to observe how the given network topology responds to
unexpected outages and events. MiniEdit, the graphical user interface for MiniNet allows users to
construct complex networks graphically instead of through the command line interface. Figure 2.4
shows the MiniEdit graphical user interface.

2.2.3 Benefits
SDNs allow for a higher level of abstraction, meaning that the complexities of managing individ-
ual network devices are abstracted away [14]. SDNs are considered viable for both data centers
and backbone networks [14]. Higher level programming languages are made available for SDNs
which allows implementation of abstraction for important properties and functions of SDN such as
structures, distributed updates, and modular composition [13]. By decoupling the control and data
layers, higher flexibility allows for new features. Allowing a centralized control plane to handle
routing decisions improves routing as the controller has a better view of the entire network. In
traditional networks, each network device tries to create its own 2-D view of the topology and tries
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to route to the best of its ability [19]. Immediate advantages also exist for network operators by
adopting SDN. IPv6, network virtualization, load balancing, and others exist once SDN is imple-
mented [14]. Network virtualization is very important as it provides the capability to create many
logical networks on top of the already established physical infrastructure [15].

Software-defined networks can also benefit data centers that handle big data applications. Within
the data center, big data applications rely on internal networks to transfer large amounts of data be-
tween server nodes. The data that travels within the data center is often greater in volume than the
data that travels from the user to the data center; therefore these intranet links are critical to pro-
cessing big data. Once SDN controllers and switches are set up, these controllers can make better
decisions about routing through a holistic perspective. These controllers can identify large flows
and prioritize them. Additionally, these controllers can respond to dynamic traffic patterns such
as seasonal demand. Information also flows between data centers so implementing an SDN may
benefit the communication between these links. The same policies that work inside of a data cen-
ter can be applied to many different data centers across geographical regions by using a multi-tier
controller to connect these data centers [19].

2.2.4 Concerns and Drawbacks

Table 2.2: Industry Concerns with SDNs [20]

Industry Sector Concern Percentage of Respondents

Finance
Cost 41%
Integration with existing systems 38%
Security 36%

Government
Cost 51%
Integration with existing systems 34%
Lack of skills possessed by employees 32%

Education
Cost 53%
Integration with existing systems 35%
Security 35%

While SDNs are often considered beneficial to networks, there are some concerns that occur
as a result of adopting the new network paradigm. SDNs are not a completely secure solution.
Table 2.2 discusses some of the industry concerns associated with SDNs in 2014. While this data
is not recent and many improvements with SDNs have taken place, many of these concerns are
still valid. For example, the cost of infrastructure replacement will always be present, as there
are associated costs with removing and replacing devices with new ones. Since the industry is
constantly evolving and no solution is perfect, there will always be concerns surrounding the use
of SDNs. As time progresses, ideally the concerns should decrease in severity to allow for the
widespread adoption of this network technology.

Additionally, many security threats exist as a result of the new paradigm. The first type of
threat exists on the application plane of SDNs. Table 2.3 summarizes the types of vulnerabilities
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Table 2.3: Security Vulnerabilities and Threats in Software Defined Networks

Attack Plane Security Vulnerability / Threat
Application Plane Unauthenticated and unauthorized applications, bugs in applications

Northbound Interface Insertion of fraudulent rules
Control Plane Unauthorized access of controllers, DoS attacks

Southbound Interface Man-In-The-Middle Attacks
Data Plane Unauthorized joining and access of network devices.

and threats that are present when using SDNs. SDN controllers allow applications to manage the
network. These applications have read and write access to the controllers, which allows for appli-
cation vulnerabilities to open the network during the attack. Application developers must ensure
that all requests and applications are both authenticated and authorized. Bugs in development can
be used to exploit the entire network. The northbound interface is also vulnerable to attack. Even if
applications are both authorized and authenticated, fraudulent rules can be inserted via the interface
which would in turn change the operations of the network in the adversary’s favor [21].

The control plane is a centralized plane in which instructions are communicated to the data
plane. This centralized point-of-failure can become the subject of Denial of Service (DoS) attacks.
Additionally, unauthorized access to these controllers would allow for full network control, creating
a situation in which an attacker would be able to modify the network in any way that they please.
The southbound interface communicated across the clearnet. This means that if a secure means of
communication between network devices and controllers are established, the communication link
would be susceptible to man-in-the-middle attacks. These attacks would allow for the acquisition
and modification of data sent to and from each device. Finally, the data plane is vulnerable to
threats if proper authentication and authorization is not implemented. Proper authorization and
authentication must be implemented to ensure the management of data plane nodes is restricted to
those permitted. Without this proper authorization, enforced policies could bemodified or removed,
or additionally, devices could join the network fabric. When implementing SDNs, it is imperative
that security measures are taken to ensure the integrity of the network remains [21].

2.3 Denial of Service Attacks
Denial of service (DoS) attacks are a lethal type of attack that threatens the internet every day.
These attacks are extremely easy to execute and are very difficult to detect and counter. As the
internet evolves, different forms of DoS attacks are introduced. Distributed denial of service, link
flooding, and crossfire attacks are some of the newer attacks that have evolved from the traditional
DoS attack.

2.3.1 Traditional Denial of Service Attacks
The traditional denial of service attack works by overwhelming a victim server with requests to
consume all of the available bandwidth and processing power thus making the machine unavailable
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to legitimate users. There are different ways to execute such an attack. One way to execute a DoS
attack is to flood the victim server with ping (ICMP) requests that have a spoofed origin IP address
to saturate the node. This attack is known as a SMURF attack. The Fraggle attack is similar
to the SMURF attack however the Fraggle attack uses UDP packets instead of ICMP requests
[22]. Another variation of the DoS attack hijacks the TCP handshake protocol by sending TCP
SYN requests to a destination server often spoofing their IP to an unreachable address so that the
destination server waits for an ACK message from a server that does not exist. The server keeps
the connection open for a specified amount of time. The attacker will do this many times to fill the
server memorywith illegitimate SYNmessages to prevent legitimate requests from being processed
or queued [23].

Adversary

Instructions

Zombie Servers

Attack Traffic

Victim Server

Figure 2.5: Execution of a DDoS Attack

Denial of service attacks are often classified by the number of sources that send illegitimate
traffic. Single-source attacks are executed using one machine. Multi-source, or distributed denial
of service (DDoS) attacks work by using manymachines to attack a single destination. Many times,
these machines are compromised by adversaries so that their computing powers can be harnessed
for free. The rightful owner of the hijacked machines is often aware that their machine is being
used to execute attacks. The groups of these machines are known as botnets [22]. Figure 2.5 shows
the execution methodology of a DDoS attack.

The first DDoS attack occurred in 1999 when the network of the University of Minnesota was
disabled for two days [24]. After this attack, DDoS attacks have continued to becomemore common
and larger in size. In 2010, the largest attack was 100Gbps whereas in 2016 the largest attack was
1Tbps [24]. A ten-fold increase in the size of the largest attack that occurred over the short period
of six years shows how evolved DDoS attacks have become.

These different DoS methodologies all attempt to achieve the same goal: to disrupt, degrade or
disable network traffic between legitimate users and services. DoS attacks may be executed for a
variety of reasons. The motives of DDoS attacks can be categorized into the following [23]

1. Economic Considerations
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2. Political Considerations

3. Ideological Considerations

4. Extortion

5. Personal Feuds

6. Naive Enthusiasts

7. Cyber Warefare

Regardless of the reason, DoS and DDoS attacks are extremely lethal and difficult to detect. The
distributed nature of DDoS attacks furthers the difficulties in detecting the attack [24].

2.3.2 Link Flooding Attacks

Table 2.4: Types of LFA Attacks

Attack Characteristics

Coremelt

Low persistence
Compromised machines used
Traffic sent to/from the attacker’s machines
Traffic indistinguishable from legitimate traffic.

Spamhaus Low persistence
Specialized bots used

Crossfire

Independent distribution of bots
Traffic indistinguishable from legitimate traffic.
Specialized Bots
Traffic sent from attacking servers to public decoy servers
Scalable

Link flooding attacks (LFAs) are a type of DoS attack that target critical network links instead
of single destination servers. These attacks are extremely dangerous as they can isolate a victim’s
entire network [25]. Link flooding attacks are also very difficult to detect, as network traffic is
rarely if ever, sent to the victim server(s). Instead, the adversaries send packets to decoy servers
that occupy a common link with the victim, congesting the link and degrading or disabling the link.
LFAs are lethal to both traditional networks and SDNs. SDN infrastructure can be the target of
LFAs, which could disrupt traffic on a much larger scale than seen on traditional networks. As
mentioned before, SDNs often have a single point of failure, the controller, that can be the target
of both DoS and LFA attacks [21].

LFA attacks can be classified into three categories: Coremelt, Spamhaus, and Crossfire. Ta-
ble 2.4 shows the different types of LFA attacks as well as the specific characteristics of each attack.
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The Coremelt attack utilizes compromised systems that send packets to and from each other
to congest a shared link. The adversary can circumvent detection and defense measures by using
protocol-conforming traffic. This attack can allow an attacker to take down both local links and
backbone links so long as compromised hosts are sufficiently distributed across many networks
[25].

One major LFA attack was the Spamhaus attack. This attack targeted Spamhaus, an organi-
zation that provides email spam filtering services. The attack targeted critical links to Internet
exchange points (IXPs) in Europe and Asia to deny service. The attack started first by attacking
servers but then evolved into flooding network links that connected Spamhaus to IXPs. This attack
was so severe that some consider the attack in its category as a discreet type of LFA attack [25].

2.3.3 Crossfire
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Figure 2.6: Execution of the Crossfire Attack

The crossfire attack is a type of LFA attack that attempts to degrade or disable connections to
a specific geographical region of the internet. This attack is perpetuated by directing low-intensity
requests to various public servers that share a common link to flood that shared link. The attack
uses multiple attacking nodes, each sending low-intensity traffic to different destination nodes.
This type of attack does not affect one specific destination, instead, it targets a large geographical
region, served by the target link node. This type of attack is devastating to a specific geograph-
ical region, as both upstream and downstream traffic is affected [26]. Figure 2.6 show the way
a crossfire attack can be executed. The crossfire attack is more difficult to detect, as crossfire is
an indirect attack, contrary to most other attacks. Since the attack spreads low-intensity traffic to
various destinations, this allows the attack traffic to blend in with legitimate traffic and is virtu-
ally undetectable in standard DoS detection and mitigation protocols, at least until after substantial
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damage has been done [26].
To execute a crossfire attack, first, a potential adversary would select a list of public servers

within the targeted areas and a set of decoy servers away from the target area. Since these servers
are publicly accessible, they can be easily found. Next, the adversary would have to perform recon-
naissance and generates a link map. This link map would be a map of layer 3 links that connect their
decoy servers to public servers. The map enables the adversary to select a set of “target servers”
that when flooded, would be able to cut off the target area from the open internet. The adversary
then coordinates the decoy servers to flood the target link, effectively blocking most flows to the
target area. Each server sends low-intensity traffic so as to not arouse suspicion of anomaly-based
detection systems. The individual low-intensity flows are indistinguishable from legitimate traffic.
Finally, the adversary begins to flood each target link one at a time to not trigger automatic packet
route mutation [26].

2.4 Related Work

2.4.1 MTD
One proposed crossfire defense solution is the moving target defense (MTD). Traditional networks
are static in nature, allowing attacks to spend as much time as needed to gather information and find
vulnerabilities [27]. MTD has historically been a warfare strategy but recently has been adopted
into the IT world. A moving target defense can first delay network mapping and reconnaissance.
ICMP and UDP scans can be disrupted by imposing fake hosts and services on random ports that do
not exist. The fake listeners can increase the time and workload an attacker would need in order to
launch an attack [28]. Additionally, a mutable network can be created that changes the IP address
and ports of network hosts dynamically. This means that machines will not be able to be located
at the same address at any given time [27]. Oftentimes, MTD takes the form of random route and
address mutation. Randomization has been a common strategy in moving target defenses. This
strategy is based on the idea that if addresses of targets within the network constantly change or
access policies between the attacker and target change, then the attack success rate will drastically
reduce. An attacker’s ability to effectively do reconnaissance is sharply diminished as well due to
the ever-changing network landscape [28]. Obfuscation of links via SDN has also been proposed
to confuse and thwart attackers [29]. By obfuscating links between the attacker and target, an
adversary would not be able to identify common links, a key step in performing a crossfire attack.

2.4.2 Rerouting-Based Defenses
Moving target defense can also be used to create virtual “routable IPs”. While the real IPs of
hosts remain unchanged and static, the virtual IPs assigned by the network consistently changed
frequently and synchronously. However, the higher the rate of mutation, the more overhead is
required to run the network [27]. This type of approach is often used by load-balancers, and

Another proposed way to mitigate large-scale DDoS attacks is by using a routing around con-
gestion (RAC) defense. The RAC defense works by routing traffic between a service deployer
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and a critical autonomous system around degraded links. RAC defense asserts that attack traffic is
irrelevant and does not need to be filtered when using this defense [30]. The RAC defense offers
path isolation by dynamically creating detour routes for critical flow [31].

2.4.3 Infeasibility of Current Mitigation Techniques
While the proposed defense solutions may be promising in theory, their feasibility in practical
application is questionable. One example of an infeasible defense is the use of rerouting-based
solutions such as the Routing Around Congestion (RAC) technique. RAC aims to avoid specific
autonomous systems by employing border gateway protocol (BGP) poisoning. However, imple-
menting RAC in production servers presents numerous challenges that make it unviable. Firstly,
the current border gateway protocol infrastructure may not be compatible with the modifications
required to support RAC. Updating the protocol in a way that enables this defense may prove to
be technically unachievable or require significant overhauls that are impractical to implement in
existing systems. Furthermore, even if the necessary changes were made to enable RAC, there is a
concern about potential misuse for malicious purposes. Allowing the manipulation of BGP to avoid
certain autonomous systems could be exploited by threat actors with nefarious intent. They could
utilize this defense to launch attacks against specific autonomous systems, disrupting their opera-
tions or compromising their security. Moreover, rerouting-based defenses like RAC are susceptible
to hijacking. Adversaries could take advantage of the rerouting mechanism and continuously force
reroutes, leading to packet drops or delays. This constant instability in network routing can signifi-
cantly impact the performance and reliability of the network, rendering the defense ineffective and
causing disruptions for legitimate traffic. Lastly, the implementation of a moving target defense,
which involves constantly changing network configurations and system parameters, imposes sig-
nificant overhead. This overhead may not be practical to handle on large-scale networks, where
the sheer size and complexity of the infrastructure make frequent changes challenging to manage.
The cost, resources, and potential disruptions caused by implementing a moving target defense can
outweigh the benefits it offers, making it unfeasible for widespread adoption. In summary, while
rerouting-based defenses like RAC may hold promise in theory, their feasibility in real-world sce-
narios is questionable. Technical compatibility issues, potential misuse, vulnerability to hijacking,
and the practical challenges of implementing a moving target defense all contribute to their infea-
sibility in nature. Alternative approaches that address these limitations may need to be explored to
ensure effective and practical defense solutions for large-scale networks [31].

2.4.4 Current Detection Efforts
Current defense mechanisms treat both legitimate and attack traffic the same, degrading the per-
formance of legitimate users. Current attack traffic detection methods point to detecting DoS and
DDoS attacks, not link-flooding attacks. These detection efforts often rely on traffic being directed
to a singular endpoint. Therefore, models that detect standard DoS and DDoS attacks may not be
able to accurately detect crossfire attack traffic.

One study, Narayanadoss et al. [32] proposes a deep-learning model to detect crossfire attacks
in intelligent transport systems. This study provides a machine-learning-based model to detect ve-
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hicles in a network that are involved in the attack. The created models reflected a detection rate
of 80% in a network of 35 nodes [32]. This model includes data irrelevant to traditional networks
(vehicle speed) that may impact the model’s accuracy in networks that are not intelligent transport
systems. Additionally, as the network grew, detection accuracy decreased. Only a maximum of
35 nodes were implemented. As noted by the author, as the number of nodes increased, “[m]any
legitimate flows could be detected as part of attacking traffic as they may have a temporal correla-
tion with other attacking flows” [32]. This model may prove infeasible in larger networks, such as
networks in large cities. Beyond this singular model, significant work has not been done to detect
crossfire attacks and classify traffic based on characteristics.
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Chapter 3

Crossfire Avoidance Framework

As mentioned before, the crossfire attack is a devastating form of LFA (Link Flooding Attack)
that aims to disrupt connectivity to a specific geographical region of the internet by flooding a
shared link. It employs multiple attacking nodes, each sending low-intensity traffic to different
destination nodes, making it difficult to detect and differentiate from legitimate traffic. The attacker
strategically selects public servers within the targeted area and decoy servers elsewhere, creating a
linkmap to identify target servers for flooding. By coordinating the decoy servers to flood the target
link, the attack cuts off the target area from the internet, affecting both upstream and downstream
traffic [26].

This thesis aims to determine an effective way to detect and mitigate crossfire attacks. Since
crossfire attacks are currently difficult to detect and virtually indistinguishable from legitimate flash
mobs, current crossfire defense mechanisms treat all traffic the same. By finding discriminating
characteristics between attack traffic and legitimate traffic, defense mechanisms may be developed
that allow legitimate traffic to pass through the critical link while blocking attack traffic entirely.

3.1 Execution of a Crossfire Attack on an SDN
Execution of a crossfire attack may seem relatively simple in theory, but its practical implemen-
tation poses challenges due to the dynamic nature of network routing. The fundamental concept
behind a crossfire attack is to flood a specific link by saturating it with a large number of low-
intensity requests [26]. However, determining the potential routes that will utilize the targeted link
can be a complex task. In a network, the routing paths taken by packets are influenced by a va-
riety of factors, such as routing protocols, network congestion, load-balancing mechanisms, and
dynamic network conditions. As a result, accurately predicting the routes taken by packets in real-
time becomes a non-trivial problem. Network paths are subject to frequent changes, and the actual
routes traversed by packets may not always be readily available or predictable.

To effectively execute a crossfire attack, one must first identify potential routes that are likely to
utilize the target link. This involves analyzing the network topology, routing tables, and potentially
even monitoring network traffic to gather information about the routing decisions made by the net-
work devices. By understanding the network’s routing protocols and configurations, an attacker
can gain insights into the potential paths packets might take. Once a sufficient number of potential
routes have been identified, the attacker can proceed to generate low-intensity requests across all of
these routes simultaneously. The intention is to distribute the attack traffic across multiple paths,
overwhelming the target link with a high volume of seemingly innocuous requests. This is impor-
tant due to the presence of anomaly-based intrusion prevention systems. These systems can include
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statistical-based techniques to detect attacks. Network traffic activity is monitored and analyzed
to create a profile that captures its stochastic behavior. This profile incorporates various metrics
such as traffic rate, protocol-specific packet counts, connection rates, and unique IP addresses[33].
During the anomaly detection process, two datasets are compared: the currently observed profile,
representing real-time traffic behavior, and a previously trained statistical profile. By evaluating
the differences between these profiles, an anomaly score is computed, indicating the level of irreg-
ularity for a specific network event. When the anomaly score exceeds a predefined threshold, the
intrusion detection system is triggered to flag the occurrence of an anomaly [33]. Therefore, if only
two devices were to send a significant amount of traffic to each other, the anomaly-based intrusion
prevention system would block the connection and the attack would be rendered ineffective. This
strategy aims to exploit the link’s limited capacity and exhaust its resources, causing congestion
and potential service disruption. However, the challenge lies in accurately determining the routes
that packets will take during the attack.

ZO
M

B
IE

 S
ER

VE
R

S D
EC

O
Y SERVER

S

TARGET LINK

Figure 3.1: Sample Execution Network

A crossfire attack can be executed on a testbed using MiniNet. As discussed before, MiniNet
has SDN capabilities and is a good way to simulate network environments. A small-scale Crossfire
attack will be executed on this testbed, with 1 shared link being targeted. Ideally, 25-50 hosts will
be used to route data through 1 shared link, degrading it quickly. To build the network, MiniEdit
will be used. A network similar to Figure 3.1 will be used to simulate the first attack. For example,
the nodes h1-h10 act as zombie servers. These servers in a real attack are compromised by the
adversary. These zombie servers will send low-intensity requests to the public decoy servers h11-
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h20. The public decoy servers are random web servers that are legitimate but are located across the
shared link. This will force all of these requests to go through the link between s7 and s8, flooding
it. Even though no host is sending a large amount of data, the link is unable to keep up with all
of the requests and is degraded. During the execution of the attack, data will be collected to show
clear degradation of connection due to the attack. After creating the first attack, some legitimate
data will be mixed in with some hosts acting as adversaries and others acting as legitimate users.
This data will be lower intensity, and take the form of legitimate requests to an endpoint. Ideally,
the combination of these two separate data sources should give enough information to distinguish
a crossfire attack from a legitimate flash mob. Variations of the base crossfire will be executed to
create differences and similarities between general traffic and attack traffic.

3.2 Detection Model
After the attack is executed and sufficient data is gathered, our focus shifts towards identifying
discernible patterns within the collected data that can effectively distinguish attack traffic from
legitimate traffic. This process entails employing a range of techniques and statistical tests to dis-
criminate between the two types of traffic: adversarial and benign. Initially, we conduct a standard
analysis of variance to determine the capability of the variables employed in accurately detecting
attack traffic. Since this model yields problematic results, we proceed to create alternative stan-
dard statistical models to explore additional avenues of analysis. These advanced techniques can
potentially uncover complex patterns and relationships within the data, enabling more sophisticated
identification and differentiation of attack and legitimate traffic.

Detecting a crossfire attack directly can be a formidable task, particularly when dealing with
encrypted packets in HTTPS. The encryption of packet contents prevents inspection, leaving only
the headers as accessible information. As a result, detecting and mitigating crossfire attacks often
relies on analyzing these headers to gain insights and make informed decisions. In this section,
we explore the methodologies employed for detecting crossfire attacks by focusing on the analysis
of packet headers. By examining the characteristics and patterns encoded within the headers, re-
searchers aim to develop models capable of classifying adversarial traffic and identifying potential
indicators or anomalies that differentiate normal network behavior from malicious activity.

Given the encryption of packet contents in HTTPS, traditional methods of packet inspection
and content analysis are rendered ineffective. As a result, researchers and security professionals
have turned their attention to packet headers as a valuable source of information for detecting and
mitigating crossfire attacks. The analysis of headers allows for the examination of key fields and
attributes that can reveal important insights about the nature of network traffic, such as source and
destination addresses, protocol information, timing parameters, and flags.

By leveraging the information contained within packet headers, we attempted to create models
to classify adversarial traffic and identify patterns associated with crossfire attacks. This involves
collecting extensive datasets of packet headers, employing statistical analysis techniques like Anal-
ysis of Variance (ANOVA), and applying machine learning algorithms, such as neural networks, to
uncover hidden patterns and relationships within the data. The goal is to create predictive models
that can accurately differentiate between normal and adversarial packets based solely on header
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information.
However, it is important to acknowledge the challenges and limitations of header-based de-

tection. The inability to directly inspect packet contents restricts the depth of analysis, and the
reliance on headers alone may not capture the full complexity of network behavior. Additionally,
factors like significant delays and congested links can introduce uncertainties and affect the ac-
curacy of classification models. Ongoing research and development are necessary to refine and
enhance header-based detection approaches, ensuring their effectiveness in real-world scenarios.

3.3 Traffic Optimization Model
Finally, to create a more robust network, we use a deep learning optimization library to increase
network bandwidth across the entire network. To do this, we first give the optimization library our
network topology to create many different possible network scenarios. In an SDN framework, the
network is controlled by a centralized controller, which makes decisions regarding traffic routing
and flow management. Gurobi optimization can be utilized within this controller to determine the
optimal paths for network traffic based on various objectives and constraints. The objective of
the optimization model is to minimize network congestion. The use of Gurobi optimization en-
ables efficient resource allocation and traffic management within an SDN. Finding optimal routes
minimizes network congestion, reduces latency, and enhances overall network performance. Ad-
ditionally, it allows network administrators to dynamically adapt to changing traffic patterns and
network conditions, ensuring efficient utilization of network resources.

The traffic optimization process consists of two stages or phases. Initially, the traffic is op-
timized using a Binary Linear Program (BLP). In this program, each pair of nodes requires the
demand to be routed through one of the available routes between them. The routing must ensure
that the forwarded flows on any link do not exceed its capacity, and only one route is chosen for
each pair of nodes. To represent the selection of routes, binary variables are used. A binary vari-
able of 1 indicates that the corresponding route is chosen, while 0 indicates it is not. Therefore, the
Linear Program can be formulated as follows:

minimize F (x) = r (3.1)

s.t.
∑
p∈Pd

ukpxdp = hd, d ∈ D (3.1a)

∑
p∈Pd

ukp = 1, d ∈ D (3.1b)

∑
d∈D

∑
p∈Pd

δdplxdp ≤ clr, l ∈ L (3.1c)

where: xdp is the flow on path p for demand d; ukp is the binary variable; hd is the volume for
demand d; cl is the capacity for link l; Pd is the number of candidate paths for demand d and in our
case we use three paths only; δdpl = 0, 1 is a link-path indicator, with δdpl = 1 if path p for demand
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d uses link l, and 0 otherwise.
Three constraints are applied. The demand constraint (3.1a) ensures that all demands are satis-

fied over some paths. The one path constrained (3.1b) ensures that only one path is chosen among
the three routes for a pair of nodes. The capacity constraint (3.1c) ensures that load does not exceed
the link capacity where r ≤ 1, after solving (3.1).

However, the complexity of a Linear Program can become very large as the network size, par-
ticularly the number of nodes, increases. To address this issue, we limit the selection to three paths
for each source-destination pair. The use of three paths has been proven to be effective and has a
negligible impact on the optimal solution [34, 35, 36].

Even with this reduced number of routes, the complexity can still increase with larger networks.
To overcome this challenge, we propose a Neural Network solution that predicts the optimal routes
for each source-destination pair, matching the solution obtained by solving the Linear Program.
This solution consists of two steps: an offline phase and an online phase.

In the offline phase, the Linear Program mentioned earlier is used to map a large number of
varying input demands to their corresponding output, which is the best set of routes. This data is
collected and used to train a Neural Network model. This trained model can then predict the best
set of routes given specific input demands or traffic patterns.

The optimal use of this model is within a Software-Defined Network (SDN) setting, where the
model can be installed in the controller. The controller periodically updates the installed routes
on switches based on the predictions of the Neural Network. The frequency of route updates is
determined by the network operator, and there is a trade-off involved. Setting the frequency too high
may occupy the switches frequently, impacting performance. Conversely, setting the frequency
too low may result in congestion on certain routes due to changes in traffic patterns, also affecting
performance. Therefore, the network operator must choose an appropriate value to maintain a
balance between network operation and performance. The graph below Figure 3.2 illustrates the
entire process.

Online phase - SDN in use

Client

ClientClient

SDN controller
Client

Offline phase - Data collection and model training

Model training

Output

Hidden

Input

Data collection

The trained model

Figure 3.2: Training Methodology for Binary Linear Programming

Please note that the proposed solution enhances the efficiency of traffic optimization by com-
bining the power of Linear Programming and Neural Networks in a complementary manner within
an SDN framework.
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It is worth mentioning that to solve the set of Binary Linear Programs, we have utilized Gurobi,
an efficient Linear Programming solver. With Gurobi, we can handle the optimization process
effectively. We apply this solver to a range of Binary Linear Programs, where we vary the input
traffic while keeping the topology constant.

In an SDN framework, if the network’s topology is relatively small and the time required to find
the optimal solution is reasonable, Gurobi optimization can be employed within the centralized
controller. This enables the controller to make informed decisions regarding traffic routing and
flow management, based on various objectives and constraints. By utilizing Gurobi, the optimal
paths for network traffic can be determined, aiming to minimize network congestion.

However, in cases where the topology is large and finding the optimal solution using Gurobi
may be time-consuming, an alternative approach can be adopted. In such scenarios, a trained neural
network can be employed to enhance the performance of the network. The neural network can assist
in dynamically adapting to changing traffic patterns and network conditions, ensuring efficient
utilization of network resources.

In summary, Gurobi optimization serves as a powerful tool for solving Binary Linear Programs
within an SDN framework. Its usage within the centralized controller depends on the size of the
topology and the time required to find the optimal solution. In cases where Gurobi optimization is
not feasible due to a large topology or lengthy optimization process, a trained neural network can
be leveraged to enhance network performance.
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Chapter 4

Testbed Development

Throughout this thesis, various tools have played a crucial role in facilitating research, experimenta-
tion, and analysis. These tools have been carefully selected based on their specific purposes, setups,
benefits, and drawbacks, ensuring their alignment with the objectives of the study. In this section,
we provide an overview of three prominent tools: Mininet, Ryu SDN Controller, and Gurobi Opti-
mization Software. Each of these tools serves distinct purposes and offers unique capabilities that
contribute to the advancement of our research.

4.1 Mininet Simulation Environment
Mininet is a network simulator that allows for prototyping large networks on constrained resources.
This allows us to create large software-defined networks without the need for expensive networking
hardware. Mininet uses lightweight virtualization with an extensible CLI and API. This allows for
a rapid prototyping workflow. Mininet allows for easy porting to real-world hardware on the first
try since the simulator uses real-world protocols such as OpenFlow. A python API is provided for
easy creation and sharing of networks can be done through a lone python script [37].

Mininet is an open-source network emulator that provides a virtual environment for network
research, education, and testing. It allows users to create and experiment with virtual networks on a
single machine, enabling the evaluation of network protocols, testing of networking algorithms, and
simulation of network topologies. By leveraging software-defined networking (SDN) principles,
Mininet facilitates the creation of complex network configurations, while its integration with SDN
controllers enables dynamic network programming.

At its core, Mininet employs Linux network namespaces, virtual Ethernet pairs, and process-
based isolation to create lightweight virtual networks. This approach allows for the emulation of
various network elements such as switches, routers, hosts, and links, all running as virtual entities
on a single host machine. By utilizing these techniques, Mininet provides a cost-effective and scal-
able alternative to physical network setups, enabling researchers and students to conduct network
experiments without the need for expensive hardware.

Mininet is particularly valuable in the field of network research and education. It provides a
controlled and reproducible environment for studying the behavior of networks, evaluating net-
work protocols, and testing new networking algorithms. Researchers can easily create and modify
network topologies, simulate different network configurations, and observe the impact of their
changes. This enables them to gain insights into network performance, scalability, and resilience,
while also allowing for the optimization of network resources and the enhancement of overall net-
work efficiency.
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Furthermore, Mininet’s integration with SDN controllers, such as OpenFlow, enhances its ca-
pabilities for network experimentation. Users can connectMininet topologies to an SDN controller,
enabling dynamic control over the network behavior. This programmability aspect of Mininet fa-
cilitates the prototyping and evaluation of SDN applications and network management strategies.
Researchers can program the network behavior on-the-fly, observe real-time changes, and analyze
the impact of different control algorithms or network policies.

In addition to research and education, Mininet serves as a valuable tool for network testing and
validation. By emulating various network scenarios, users can assess the performance, scalability,
and resilience of their network designs before deploying them in a production environment. Mininet
allows for the easy creation and modification of network topologies, making it possible to simulate
different network configurations and evaluate their impact on network performance. This helps
identify potential bottlenecks, optimize network resources, and enhance overall network efficiency.

Mininet’s flexibility and extensibility are further enhanced by its Python-based interface, which
allows users to programmatically control and interact with network elements. This feature facil-
itates the automation of network experiments and enables the integration of Mininet with other
tools and frameworks. Researchers and developers can leverage the Python interface to automate
complex network setups, perform repetitive tasks, and integrate Mininet with existing network
management systems or test frameworks.

4.1.1 Setup
In this thesis. we use the VM (Virtual Machine) distribution of Mininet. This allows for granular
control over the resources allocated to Mininet and allows for multiple network simulators to run
on the same hardware. To install Mininet, first VirtualBox must be installed. Virtualbox is a VM
Hypervisor that allows for VMs to be managed on any operating system. To setup Mininet:

1. Download Virtual Box: VirtualBox is openly available on their website. Download the
version that corresponds to the test bed operating system

2. Download Mininet OVF: Download the latest Mininet Virtual Machine image (usually in
OVA or OVF format).

3. Import the Mininet Virtual Machine image into VirtualBox:

a. Open VirtualBox and click on the “File” menu.
b. Select “Import Appliance” from the dropdown menu.
c. In the import dialog, click the folder icon and browse to the location where you down-

loaded the Mininet Virtual Machine image.
d. Select the Mininet Virtual Machine image file and click “Open”.
e. Review the appliance settings and click “Import” to start the import process.

4. Configure the Mininet Virtual Machine:
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a. Once the import process is complete, select the imported virtual machine in the VirtualBox
main window.

b. Click on the “Settings” button to open the virtual machine settings.
c. Adjust the settings as needed, such as memory allocation and network settings.
d. Click “OK” to save the changes.

5. Start the Mininet Virtual Machine

a. Select the Mininet Virtual Machine in the VirtualBox main window.
b. Click on the “Start” button to boot up the virtual machine.

6. Log in to the Mininet Virtual Machine:

a. Once the virtual machine has started, a login prompt will appear.
b. Enter the username and password for the Mininet virtual machine. The default username

is “mininet” and the password is “mininet”.

4.1.2 Benefits
Mininet, as an open-source network emulator, offers numerous benefits that contribute to its widespread
adoption in the networking community. This section highlights some of the key advantages and
advantages of using Mininet for network research, education, and testing.

1. Cost-Effective: One of the primary benefits of Mininet is its cost-effectiveness. By pro-
viding a virtual network environment on a single machine, Mininet eliminates the need for
expensive physical network equipment. Researchers, students, and network engineers can
conduct experiments, test network configurations, and evaluate protocols without incurring
significant hardware costs. This accessibility promotes innovation and enables a broader
audience to engage in network-related activities.

2. Scalability: Mininet allows for the creation of scalable network topologies, accommodating
a wide range of network sizes and complexities. Users can easily design and modify net-
works with varying numbers of hosts, switches, and routers. This scalability is particularly
useful in testing large-scale network deployments and evaluating network protocols under
different traffic loads. Mininet’s ability to scale the network environment helps researchers
and engineers analyze the behavior of networks in diverse scenarios and identify potential
bottlenecks or performance limitations.

3. Reproducibility: Mininet facilitates reproducibility in network research and experimenta-
tion. Researchers can capture the state of network emulation, including the network topol-
ogy, configurations, and traffic patterns, and share it with others. This capability allows for
the replication of experiments, verification of results, and collaboration among researchers.
The ability to reproduce network conditions is crucial for validating research findings and
building upon existing work.
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4. Control and Programmability: Mininet’s integration with SDN controllers, such as Open-
Flow, empowers users with enhanced control and programmability over the network be-
havior. Users can dynamically modify the network flow, configure routing protocols, and
experiment with network policies in real-time. This programmability aspect is invaluable for
evaluating the performance of SDN applications, exploring different network management
strategies, and testing novel network algorithms. The ability to program network behavior
on-the-fly accelerates the development and evaluation of new networking concepts.

5. Flexibility and Extensibility: Mininet offers a flexible and extensible platform for network
experimentation and development. Its Python-based interface allows users to leverage the
extensive Python ecosystem and libraries for network automation, analysis, and integration
with external tools. Researchers can easily automate experiments, customize network behav-
ior, and integrate Mininet with existing network management systems or test frameworks.
This flexibility enables the seamless integration of Mininet into various research and devel-
opment workflows, enhancing productivity and enabling novel approaches to network ex-
perimentation. Mininet facilitates automation through its Python-based interface, enabling
users to write scripts and automate repetitive tasks, thus saving time and effort.

6. Educational Value: Mininet’s user-friendly interface and simplicity make it an ideal tool
for network education and training. Students can gain hands-on experience in networking
principles, protocols, and configurations by creating and managing virtual networks using
Mininet. The ability to visualize and interact with network topologies in a controlled envi-
ronment enhances understanding and fosters active learning. Mininet serves as an effective
platform for teaching networking concepts, enabling students to apply theoretical knowledge
in practical scenarios.

7. Easy Sharing of Scripts: Mininet allows for the easy sharing of scripts and configurations.
Researchers and users can share their network setups, experiments, and network topologies
as scripts or configuration files. This ease of sharing promotes collaboration, accelerates
research progress, and allows others to replicate experiments and build upon existing work
easily.

8. Multiple Instances on One Machine: Mininet supports running multiple instances on a
single machine, either through the use of multiple virtual machines (VMs) or through the
isolation capabilities of the underlying operating system. This enables users to create and
test complex network scenarios involving multiple network topologies simultaneously. The
ability to run multiple instances on one machine enhances productivity

4.1.3 Drawbacks
WhileMininet offers numerous benefits for network research, education, and testing, it is important
to consider some of the limitations and drawbacks associated with its usage. This section discusses
several key challenges that users may encounter when working with Mininet.
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1. Limited Physical Network Simulation: Although Mininet provides a virtual network envi-
ronment, it does not fully replicate the characteristics of a physical network. Certain aspects
of network behavior, such as timing constraints, interference, and hardware-specific nuances,
may not be accurately emulated. This limitation can affect the realism and accuracy of cer-
tain network experiments, especially those that heavily rely on precise timing or physical
layer interactions.

2. Resource Intensive: Running large-scale network simulations with complex topologies and
high traffic volumes can be resource-intensive. Mininet’s emulation capabilities rely on the
resources of the underlying host machine, including CPU, memory, and network interfaces.
As the size and complexity of the emulated network increase, the resource requirements also
escalate. Users may encounter limitations in terms of available system resources, which can
impact the scalability and performance of Mininet-based experiments.

3. Limited Protocol Support: While Mininet supports a wide range of network protocols and
offers flexibility in terms of customizing network behavior, there may be instances where cer-
tain protocols or features are not fully supported. It is important to verify the compatibility
of desired protocols and features with Mininet’s capabilities before conducting experiments.
Users may need to resort to workarounds or manual configurations to emulate specific pro-
tocol behaviors, which can be time-consuming and may introduce inaccuracies.

4. Lack of Real-world Network Variability: Mininet’s virtual network environment may lack
the variability and unpredictability of real-world networks. Network behavior in Mininet is
typically deterministic, whichmeans that the same input and conditionswill produce the same
output consistently. However, real networks are subject to dynamic changes, varying traffic
patterns, and unpredictable events. This limitation may hinder the ability to accurately assess
the resilience and adaptability of network protocols and algorithms in real-world scenarios.

5. Learning Curve and Lack of Tutorials: Mininet can have a steep learning curve, par-
ticularly for users who are new to networking or unfamiliar with Linux operating systems
and SDN principles. The availability of comprehensive and beginner-friendly tutorials for
Mininet is limited, which may pose challenges for users trying to grasp the concepts and
effectively utilize the tool. The lack of accessible learning resources can hinder the adoption
and utilization of Mininet for network experimentation.

6. Incomplete/Outdated Documentation: The documentation for Mininet may be incomplete
or outdated in some cases. Users may encounter challenges when seeking detailed informa-
tion or troubleshooting specific issues. Outdated documentation may not accurately reflect
the latest features, functionality, or best practices, leading to confusion or misinterpretation.
This can result in additional effort and time spent on finding alternative sources of informa-
tion or seeking community support.

7. Unmaintained: Mininet’s development and maintenance may vary over time, and users may
encounter instances where certain features or functionalities are no longer actively supported
or updated. This lack of ongoing maintenance can result in compatibility issues with newer
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operating systems, dependencies, or SDN controllers. Users may need to invest additional
effort in adapting Mininet to their specific environment or consider alternative network em-
ulation solutions.

4.2 Ryu SDN Controller
The RYU SDN Controller is an open-source software platform developed in Python that facilitates
the development and management of Software-Defined Networking (SDN) applications. This sec-
tion provides an overview of the RYU SDN Controller, highlighting its key features, architecture,
and its significance in the SDN landscape. The RYU SDN Controller serves as a flexible and
programmable framework for researchers, network operators, and developers to create and deploy
SDN applications capable of controlling the behavior of SDN-enabled networks. Its simplicity,
ease of use, and extensive support for various SDN protocols and OpenFlow versions have con-
tributed to its widespread recognition. RYU’s Controller architecture is designed to be modular
and extensible, enabling developers to easily customize and extend its functionality. It follows a
component-based structure, where each module handles specific tasks or functions within the SDN
application. This modular design simplifies the development process and encourages code reuse,
fostering a collaborative and efficient SDN application ecosystem.

4.2.1 Setup
1. Set up the Python environment:

a. Ensure that Python is installed on your system. Ryu requires Python 3.5 or later.
b. If Python is not installed, download and install it from the official Python website.

2. Install Ryu using pip:

a. Open a terminal or command prompt.
b. Run the following command to install Ryu: pip install ryu

4.2.2 Benefits
The RYU SDN Controller provides numerous benefits to researchers, network operators, and de-
velopers in the Software-Defined Networking (SDN) domain. This section explores the key ad-
vantages of using the RYU SDN Controller and how it enhances network control, flexibility, and
innovation.

1. Flexibility and Customizability: RYU offers a highly flexible and customizable platform
for building SDN applications. Its architecture allows developers to tailor the controller to
specific network requirements and experiment with different network management strate-
gies. With RYU, users have the freedom to design and implement custom SDN applications
that align with their specific use cases and objectives.
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2. Protocol Support: RYU provides extensive support for various SDN protocols, including
OpenFlow, NETCONF, OF-config, and more. This broad protocol compatibility allows
RYU to integrate with a wide range of SDN devices and switches, enabling seamless control
and management of diverse network infrastructures. The ability to work with multiple pro-
tocols enhances interoperability and simplifies the integration of RYU into existing network
environments.

3. Ease of Use: RYU is designed with simplicity in mind, making it user-friendly and accessi-
ble. Its intuitive interface and well-documented APIs facilitate the development process, en-
abling developers to quickly grasp SDN concepts and start building applications efficiently.
RYU’s ease of use lowers the learning curve, allowing researchers, network operators, and
developers to focus on their specific network goals.

4. Programmability: RYU’s programmable nature empowers developers to exert granular
control over network behavior. Leveraging Python as its programming language, RYU en-
ables rapid application development and facilitates the integration of third-party libraries
and tools. This programmability extends the capabilities of RYU, enabling the creation of
sophisticated SDN applications tailored to specific networking requirements.

5. Lightweight and Extensible: RYU is lightweight in terms of resource utilization, making it
suitable for various deployment scenarios. Its efficient resourcemanagement ensures optimal
performance even in resource-constrained environments. Additionally, RYU’s extensibility
allows developers to incorporate additional functionalities and features as needed, further
enhancing its capabilities and adaptability.

6. Real-World Deployment: RYU has been successfully deployed in real-world applications
across various industries, including telecommunications, data centers, and enterprise net-
works. Its versatility and compatibility with different SDN protocols make it suitable for
a wide range of network environments. RYU empowers organizations to implement SDN
solutions that enhance network agility, scalability, and management efficiency.

4.2.3 Drawbacks
While the RYU SDN Controller has provided significant contributions to the Software-Defined
Networking (SDN) landscape, it is important to consider its drawbacks. This section explores
some of the key limitations associated with RYU.

1. Learning Curve: RYU involves a steep learning curve, particularly for users new to SDN
concepts and programming. The complex nature of SDN and the intricacies of RYU’s archi-
tecture require a solid understanding of network protocols, Python programming, and SDN
principles. The lack of comprehensive tutorials and learning resources can further hinder the
learning process.

2. Limited GUI Support: RYU primarily relies on a command-line interface (CLI) and lacks
extensive graphical user interface (GUI) support for configuration and monitoring. Users
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who prefer visual representations and intuitive GUI-based management interfaces may find
RYU less user-friendly compared to controllers with robust GUI capabilities.

3. Scalability Concerns: RYU may face challenges in scaling to large and complex network
environments. As the size of the network or the number of SDN devices increases, RYU’s
performance may be affected, potentially leading to performance bottlenecks. Users operat-
ing large-scale SDN deployments with high traffic volumes should carefully evaluate RYU’s
scalability and performance capabilities.

4. Limited Vendor Support: RYU’s open-source nature means that it may lack direct support
from networking equipment vendors. Users relying on specific vendor-dependent features
or proprietary extensions may encounter difficulties in integrating their hardware with RYU.
The lack of vendor-specific support can limit interoperability and advanced functionalities
in certain networking environments.

5. Lack of Maintenance: One significant drawback is that RYU is no longer actively main-
tained. The absence of ongoing development and updates raises concerns about the con-
troller’s compatibility with newer networking technologies and protocols. The lack of main-
tenance may result in outdated features, potential security vulnerabilities, and limited com-
munity support for bug fixes or enhancements.

6. Advanced Features and Functionality: RYU may not offer the same extensive set of ad-
vanced features and functionalities as some other SDN controllers. Certain specialized use
cases or specific requirements may necessitate additional features that may not be readily
available in RYU. Users with complex SDN environments or specific network management
needs should carefully assess whether RYU can meet all their requirements.

4.3 Gurobi Optimization Library
Gurobi is a state-of-the-art mathematical optimization solver renowned for its powerful algorithms
and cutting-edge solver technologies. Developed by Gurobi Optimization, LLC, it is designed to
solve a wide range of optimization problems, including linear programming (LP), mixed-integer
programming (MIP), and quadratic programming (QP), among others. Gurobi is known for deliv-
ering high-performance optimization solutions that combine speed, accuracy, and robustness. We
use this optimization to create pre-determined network load scenarios to determine the best route
for all packets.

4.3.1 Setup
1. Obtain a License: Obtain a valid Gurobi license from the Gurobi website or request an

academic license if applicable.

2. Download Gurobi:
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a. Navigate to the ”Download Center” or ”Downloads” section.
b. Select the appropriateGurobi version for your Linux distribution and download theGurobi

installation package in tar.gz format.

3. Install Gurobi:

a. Navigate to the directory where the Gurobi installation package is downloaded.
b. Use the following command to extract the contents of the tar.gz archive: tar -xzvf

gurobi*.tar.gz
c. Run the Gurobi installer as the superuser using the following command: sudo python3

setup.py install

4.3.2 Benefits
The utilization of Gurobi in network traffic engineering brings numerous benefits to optimize and
enhance network performance. By leveragingGurobi’s powerful optimization capabilities, network
operators can address complex challenges associated with traffic management and achieve efficient
utilization of network resources. The benefits of using Gurobi for network traffic engineering can
be summarized as follows:

1. Traffic Flow Optimization: Gurobi enables the optimization of network traffic flows by
formulating mathematical models that consider factors such as network congestion, band-
width requirements, and latency constraints. By finding optimal traffic routing and resource
allocation solutions, Gurobi helps minimize congestion, reduce packet loss, and optimize
the overall flow of network traffic. This results in improved network performance, reduced
latency, and enhanced user experience.

2. Load Balancing: Gurobi aids in load balancing by optimizing the distribution of network
traffic across multiple paths and links. Through its optimization capabilities, Gurobi can allo-
cate network resources effectively, ensuring balanced utilization and preventing bottlenecks.
Load balancing optimization facilitates optimal resource allocation and improves network
capacity, leading to better performance and increased scalability.

3. Resource Efficiency: Gurobi aids in optimizing the utilization of network resources, such as
bandwidth and computing power. By formulating resource allocation problems as optimiza-
tion models, Gurobi determines the optimal allocation of resources across network devices
and links. This optimization minimizes resource wastage, ensures efficient resource utiliza-
tion, and reduces operational costs. Network operators can achieve better resource efficiency
and cost-effectiveness by leveraging Gurobi’s optimization capabilities.

4. Scalability: Gurobi’s scalability allows it to handle large-scale network traffic engineering
problems with a high number of variables and constraints. Whether dealing with massive
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traffic volumes or complex network topologies, Gurobi’s efficient algorithms and solver tech-
nologies can effectively optimize traffic management and resource allocation. This scalabil-
ity ensures that Gurobi can be applied to real-world network environments, accommodating
growing network demands and ensuring optimal performance as networks expand.

5. Flexibility and Customization: Gurobi offers a flexible modeling environment, supporting
various programming languages and providingAPIs and libraries for easy integration into ex-
isting network management systems. This flexibility allows network operators to customize
optimization models to their specific requirements, incorporating unique constraints, objec-
tives, and network policies. Gurobi’s customization capabilities enable tailored solutions that
align with specific network traffic engineering needs.

4.3.3 Drawbacks
While using Gurobi for traffic engineering can be beneficial, there are certain drawbacks that need
to be taken into account. These drawbacks are as follows;

1. Complexity of Model Formulation: Gurobi requires the formulation of mathematical op-
timization models to represent network traffic engineering problems. The process of formu-
lating these models can be complex, requiring expertise in mathematical modeling and opti-
mization techniques. Network operators and engineers may need to invest time and effort in
understanding and formulating the models correctly, which can be a challenge, particularly
for those without extensive optimization background.

2. Computational Resources: Gurobi’s optimization algorithms and solver technologies are
computationally intensive, especially for large-scale network traffic engineering problems.
Solving complex optimization models may require substantial computational resources, in-
cluding memory and processing power. Network operators must ensure that their systems
have sufficient resources to handle the computational demands of Gurobi, especially in sce-
narios with high network traffic volumes or complex network topologies.

3. Solution Interpretation: While Gurobi provides optimal solutions to network traffic engi-
neering problems, interpreting and implementing these solutions can be challenging. The
solutions generated by Gurobi may involve changes in traffic routing, resource allocation,
or network configurations. Network operators must carefully interpret and translate these
solutions into actionable changes within the network infrastructure. Implementing complex
optimization solutions in a live network environment requires careful planning and coordi-
nation to avoid disruption or unintended consequences.

4. Dependency on Problem Formulation: The effectiveness of Gurobi heavily relies on the
accuracy and completeness of the mathematical model formulation. Incorrect or incomplete
modeling can lead to suboptimal solutions or infeasible outcomes. Network operators need
to invest significant effort in accurately representing the network traffic engineering problem
in the optimization model. Any errors or oversights in the model formulation can impact the
quality of the optimization results.
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5. Cost: Gurobi is a commercial optimization solver and, as such, has associated licensing costs.
Depending on the scale and complexity of the network traffic engineering requirements, the
licensing fees for Gurobi may pose a financial burden. Organizations need to evaluate the
cost-effectiveness of using Gurobi compared to alternative optimization solvers or in-house
solutions.

6. Learning Curve and Support: Gurobi’s utilization in network traffic engineering may in-
volve a learning curve, especially for individuals who are not familiar with optimization
techniques or the Gurobi software. Acquiring the necessary knowledge and skills to effec-
tively use Gurobi may require training or external expertise. Additionally, while Gurobi
provides documentation and support resources, the availability of comprehensive tutorials
or community support specifically focused on network traffic engineering may be limited.

37



Chapter 5

Experiment & Results

5.1 Executing a Crossfire Attack
The execution of a crossfire attack, in theory, appears straightforward. By flooding a specific link,
the attacker aims to overwhelm it with traffic. This process involves identifying potential routes
that utilize the targeted link and generating low-intensity requests across those routes to flood the
link effectively. However, in practice, executing a crossfire attack can be challenging due to the
limited availability of information regarding the specific routes taken by packets. The lack of public
access to this crucial routing data presents a significant hurdle for attackers attempting to orchestrate
such attacks. In this section, we delve into the intricacies of executing a crossfire attack, exploring
the methodologies used to overcome these obstacles and the implications of this type of attack on
network performance and security.

5.1.1 Network Topology
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Figure 5.1: Test Network Architecture [38] 1

Our crossfire attack was executed on a network simulated by the MiniNet network simulator
and the RYU SDN controller. These tools allowed for the creation and management of a virtual

1Reproduced with express permission from authors
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network environment for experimentation and analysis. To set up the network, a Python script was
employed, which utilized the ATT North America Backbone network from The Internet Topol-
ogy Zoo [38] as the basis for the network configuration. The network topology, as depicted in
Figure 5.1, provides a visual representation of the structure and interconnections of the various
network components. It showcases the arrangement of links within the simulated network. To in-
troduce additional functionality and explore specific scenarios, a Mobile Edge Computing (MEC)
server was strategically placed between the ORLD and CLEV nodes. The MEC server served as
a centralized computing platform that brought computing resources closer to the network edge,
enabling efficient processing and analysis of data generated within the network. In this particular
setup, the MEC server had a direct connection between the ORLD and CLEV nodes, facilitating
seamless communication and data exchange between them. The choice of the ATT North America
Backbone network from The Internet Topology Zoo [38] was driven by its complexity and size,
which allowed for a more realistic simulation of network traffic. By utilizing a network with a
sufficient number of components and diverse connections, researchers and analysts could better
understand and evaluate the performance, scalability, and security aspects of network systems un-
der various conditions

5.1.2 Simulation Environment Setup
Table 5.1 outlines the tools used for the simulation and their version. We followed these steps to
simulate the testing on Mininet:

1. Obtain a graph for the topology from Topology Zoo [38]

2. Manually create a MiniNet python script based on the visualization of the graph.

3. Modify the previously created Python script to generate random traffic demand between pair
of hosts for the benign traffic.

4. Determine nodes across the target links and add them to the adversary list

5. Have the adversary list begin flooding low-intensity requests across the shared link

6. Collect data using Wireshark

5.1.3 Attack Methodology
Once the network setup is complete, the testing scenario involves a sequence of events. First, a
ping request is sent from the NY54 node, which represents an external connection, to the MEC
(Multi-Access Edge Computing) server. This initial interaction confirms the connectivity between
these nodes.

Following the establishment of the network, servers within the network begin initiating HTTP
connections randomly across the infrastructure. Approximately 80% of the servers are engaged
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Table 5.1: Tools used in Simulation and their version

Tools Version
Mininet 2.3.0-210211-ubuntu-20.04.1-legacy-server-amd64-ovf
Ryu 4.3.4
Python 3.8.10
Gurobi 3.8.10
Python 3.8.10
VirtualBox 6.1.38_Ubuntu r153438
Ubuntu Host 20.04.6 LTS

in requesting HTTP resources at any given time. This random traffic generation simulates unpre-
dictable and legitimate network activity, replicating real-world usage patterns.

After a period of 30 seconds dedicated to legitimate traffic flows, the attack commences. Mul-
tiple zombie servers (compromised devices controlled by the attacker), start streaming video traffic
over TCP (Transmission Control Protocol) connections to each other. TCP is deliberately chosen
for this attack to obscure the nature of the traffic being transmitted. To further obfuscate the con-
tent, the videos are streamed over HTTPS (Hypertext Transfer Protocol Secure), making it difficult
to distinguish the packets as video traffic based on their packet types.

Each zombie server strategically selects its destinations, ensuring that the attacking video pack-
ets pass through, but do not end at, either the ORLD or CLEV nodes. This strategic routing aims
to block external connections to the MEC server. Consequently, the switches connecting these
networks experience congestion due to the significant volume of data flowing through each link.

The attack is executed in three phases, with a third of the zombie servers initiating the attack
during each phase. This staged approach helps distribute the attack traffic and potentially evade
detection or mitigation measures.

Throughout the entire process, packet headers are captured using Wireshark, a widely used
network protocol analyzer. Despite the use of HTTPS, which encrypts the content of the packets,
the packet headers remain visible. Therefore, in this scenario, the network would only have access
to information contained in the packet headers to analyze and identify the attack.

5.1.4 Results
After running the network for 5 minutes, the ping round trip times were collected and plotted in
Figure 5.2, showcasing the temporal changes in the network’s responsiveness. To provide a clearer
representation of the data, a moving average was also plotted as a line, indicating the overall trend.
During the initial stage, prior to any active attacks, the ping round trip times remained relatively
stable, with values ranging between 50 to 100 milliseconds. This indicated a reasonably efficient
network performance and responsiveness. However, as the attack commenced and the zombie
servers came into play, the average ping round trip times experienced a noticeable surge. The ping
increased to approximately 500 milliseconds, demonstrating a significant delay in communication
between the source and destination. This jump in response time highlighted the impact of the attack
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on the network’s overall performance, causing a tangible slowdown in data transmission. Follow-
ing the first phase, the attack intensified further, leading to a subsequent increase in the average
ping round trip times. The values climbed to around 800 milliseconds, further exacerbating the
latency issues experienced by the network. This escalation in response time served as an indicator
of the mounting strain on the network’s resources and its ability to handle the incoming traffic ef-
fectively. Finally, as the attack progressed into its third phase, the ping round trip times reached a
notable peak, with the values hovering around 1500 milliseconds. This significant increase in la-
tency pointed to a severe degradation in the network’s performance, with the delay between request
and response becoming increasingly pronounced. The prolonged response times were indicative
of the network’s struggle to cope with the heightened load imposed by the ongoing attack, causing
substantial disruptions to normal operations.

Overall, the plotted data in Figure 5.2 illustrates the adverse effects of the attack on the net-
work’s ping round trip times. The upward trajectory of the moving average line clearly demon-
strates how the average ping gradually worsens as the attack progresses through its different phases,
highlighting the detrimental impact of such attacks on network performance and stability.

5.2 Detecting a Crossfire Attack
In the following subsections, we delve into the specific techniques used to detect crossfire attacks
by analyzing packet headers. We explore the data collection process, statistical analysis methods,
and the implementation of neural networks to develop predictive models. By understanding these
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Table 5.2: Initial ANOVA Full Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 176.18978 12 352.3796 <.0001
Full 408.10276
Reduced 584.29254

techniques, we can gain insights into the challenges and advancements in detecting and mitigating
crossfire attacks in today’s encrypted network environments.

5.2.1 Classifying Adversarial Traffic
Model Setup

After conducting the experiment outlined in Section 5.1, a comprehensive data collection process
was initiated to gather packet headers for every packet transmitted throughout the network. A sub-
stantial amount of data was collected, comprising approximately 30,000 packets. These packets
were captured and recorded for further analysis and evaluation. To extract meaningful insights
and uncover patterns within the collected packet data, the dataset was processed and imported into
JMP Pro, a powerful statistical analysis software. By utilizing JMP Pro’s extensive capabilities,
researchers were able to explore the dataset and perform a range of advanced analytical techniques.
In the initial analysis, an Analysis of Variance (ANOVA) was employed to assess the statistical
significance of various factors or variables within the packet headers. ANOVA allowed for the
identification of any significant differences or relationships between different groups or categories
of packets, providing valuable insights into the effects of different network conditions or configu-
rations on packet behavior. Additionally, a neural network was implemented to further investigate
and model the complex relationships within the collected packet data. Neural networks, as a ma-
chine learning technique, are capable of identifying hidden patterns and learning from complex
datasets. By training a neural network on the packet headers, we aim to develop a predictive model
that could effectively classify and interpret different packet characteristics or behaviors.

ANOVA

After conducting the initial analysis of variance (ANOVA) on the collected packet data, the results
were summarized and presented in Table 5.2 and Table 5.3. These tables provided insights into the
significant predictors of adversarial packets within the dataset.

ANOVA, short for Analysis of Variance, is a statistical technique used to compare the means
of two or more groups or treatments and determine if there are significant differences among them.
It is a parametric test that assesses the variability within and between groups to draw conclusions
about population means. ANOVA provides a comprehensive framework for understanding the
sources of variation and making statistical inferences based on the observed data.

The fundamental principle behind ANOVA is the partitioning of total variance into different
components: the between-group variance and the within-group variance. The between-group vari-
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Table 5.3: Initial ANOVA Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept Unstable -6.18762050 89752.103 0.00 0.9999
tcp.window_size 0.00057399 8.7147e-5 43.38 <.0001
tcp.len -0.00051130 0.0003489 2.150 0.1428
tcp.stream -0.08826740 0.0343179 6.620 0.0101
tcp.flags[0x00000010] Unstable -15.9381260 89752.102 0.000 0.9999
tcp.flags[0x00000011] Unstable 9.78867015 116551.53 0.000 0.9999
- tcp.flags[0x00000012] Unstable 12.0348821 117261.45 0.000 0.9999
tcp.flags[0x00000018] Unstable -15.0194920 89752.102 0.000 0.9999
tcp.analysis.ack_rtt -63.1695000 7.2849454 75.19 <.0001
frame.time_relative 0.11828939 0.0393738 9.030 0.0027
frame.time_delta 1.88407238 1.1200274 2.830 0.0925
tcp.time_relative 25.6221427 3.1284271 67.08 <.0001
tcp.time_delta 3.24388117 4.7044249 0.480 0.4905

ance represents the variability among the means of different groups or treatments, indicating the
extent to which group means differ from each other. On the other hand, the within-group variance
captures the inherent variability within each group, reflecting the amount of variation that can be
attributed to random fluctuations or individual differences within the groups.

To perform ANOVA, certain assumptions must be met. These include the assumption of inde-
pendence, where the observations within each group are independent of each other. Additionally,
the assumption of normality states that the data within each group should follow a normal distribu-
tion. Lastly, the assumption of homogeneity of variances requires that the variability within each
group is approximately equal.

ANOVA produces an F-statistic, which measures the ratio of the between-group variability
to the within-group variability. By comparing this statistic to a critical value based on the chosen
significance level, researchers can determine whether the observed differences among group means
are statistically significant or simply due to chance. If the F-statistic exceeds the critical value, it
indicates the presence of significant differences between at least some of the groups.

The notation “Prob > ChiSq” refers to the p-value associated with the chi-square test statistic
in statistical analysis. The chi-square test is a statistical test used to determine whether there is
a significant association between categorical variables. It compares the observed frequencies in
different categories with the frequencies that would be expected under a null hypothesis of inde-
pendence or homogeneity.

The p-value is a measure of the evidence against the null hypothesis. It represents the prob-
ability of observing a test statistic as extreme as, or more extreme than, the one calculated from
the data, assuming that the null hypothesis is true. In the case of the chi-square test, a smaller p-
value indicates stronger evidence against the null hypothesis and suggests that there is a significant
association between the categorical variables.

When the p-value is reported as “Prob > ChiSq,” it means that the p-value is less than a certain
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Table 5.4: Revised ANOVA Full Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 105.98066 4 211.9613 <.0001
Full 478.31188
Reduced 584.29254

Table 5.5: Revised ANOVA Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept -13.9094560 3.0268445 21.120 <.0001
tcp.window_size 0.000396320 6.8154e-5 33.810 <.0001
tcp.analysis.ack_rtt -38.0040650 3.7611744 102.10 <.0001
frame.time_relative 0.01735100 0.0023833 53.000 <.0001
tcp.time_relative 15.8395049 2.3819797 44.220 <.0001

significance level, often denoted by α (e.g., α = 0.05). The ChiSq in the notation refers to the
chi-square statistic used in the test. The specific p-value is typically not explicitly mentioned but
can be understood to be smaller than the significance level α.

From the data in Table 5.2 and Table 5.3, it was observed that the window size, ack_rtt, and
time_relative variables exhibited the largest influence on classifying packets as adversarial. To
refine and streamline the analysis, non-significant factors were subsequently eliminated from the
ANOVA. This process aimed to focus on the most relevant and influential variables. The updated
ANOVA results were then presented in Table 5.4 and Table 5.5. reflecting the reduced set of pre-
dictors. The revised ANOVA indicated that the combined factors of window size, ack_rtt, frame
time, and tcp time remained significant in determining whether a packet was adversarial or not.
These variables collectively formed the basis of the model for classifying packets as adversarial.
However, it should be noted that this model may not be practical in scenarios involving nodes with
significant delays. In such cases, the presence of significant delays could result in the model classi-
fying all packets as adversarial, potentially leading to the blocking of all connections. This situation
could exacerbate the impact of an attack, as legitimate connections might also be blocked due to
the model’s overly cautious classification. Furthermore, during an attack, the delay experienced by
packets traversing congested links could pose a challenge. In such situations, the model’s tendency
to classify all packets as adversarial might exacerbate network congestion and intensify the adverse
effects of the attack. These considerations highlight the limitations and potential drawbacks of the
ANOVA-based model. It underscores the need for further refinement and exploration of alterna-
tive approaches that can address the issues related to significant delays and congested links. By
developing more robust and adaptive models, it may be possible to enhance the effectiveness and
practicality of packet classification in the context of adversarial attacks.
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Figure 5.3: Neural Network Diagrams Using Hyperbolic Tangent Nodes

Table 5.6: Confusion Matrix for Training Data
for 1× 3 neural network

Predicted
Adversarial Benign

Actual Adversarial 19206 33
Benign 242 4928

Table 5.7: Confusion Matrix for Validation
Data for 1× 3 neural network

Predicted
Adversarial Benign

Actual Adversarial 6373 12
Benign 72 1679

Table 5.8: Confusion Matrix for Training Data
with 2× 25 neural network

Predicted
Adversarial Benign

Actual Adversarial 19308 28
Benign 140 4933

Table 5.9: Confusion Matrix for Validation
Data with 2× 25 neural network

Predicted
Adversarial Benign

Actual Adversarial 6375 10
Benign 31 1720
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Neural Network

In addition to the ANOVA analysis, a neural network model was developed based on the selected
criteria. The architecture and structure of the neural network were visualized in Figure 5.3, provid-
ing a diagrammatic representation of its layers and connections. To evaluate the performance of
the neural network model, confusion matrices were constructed for both the training and validation
datasets, as shown in Table 5.6 and Table 5.7, respectively. The confusion matrices allowed for
a comprehensive assessment of the model’s predictive capabilities by displaying the classification
results. In the training data, the neural network exhibited high accuracy in correctly predicting le-
gitimate packets, achieving an accuracy rate of 99.82%. This indicates that the model accurately
identified the vast majority of non-adversarial packets. For attack packets, the model achieved a
correct prediction rate of 95.3%, meaning it accurately identified a significant portion of the ad-
versarial packets during training. In the validation data, which serves as an independent dataset
to assess the model’s generalization capability, the neural network performed similarly well. It
correctly identified 99.81% of legitimate packets, demonstrating its ability to accurately classify
non-adversarial traffic. For attack packets, the model achieved a correct prediction rate of 95.88%,
indicating its capacity to correctly identify a substantial portion of adversarial packets in unseen
data. The high accuracy rates achieved by the neural network model in both training and valida-
tion data highlight its effectiveness in distinguishing between legitimate and adversarial packets.
The model’s ability to correctly classify a large majority of legitimate packets provides assurance
that it can accurately identify normal network traffic, minimizing the risk of false positives. Sim-
ilarly, the model’s capability to accurately detect a significant portion of attack packets suggests
its potential for effectively identifying malicious network activity. These results demonstrate the
promising performance of the neural network model in packet classification. However, it is es-
sential to continually monitor and evaluate the model’s performance using real-world data, as the
efficacy of such models can vary depending on the specific characteristics and dynamics of the net-
work environment. Regular updates and refinements to the model can further enhance its accuracy
and reliability in distinguishing between legitimate and adversarial packets. Other models were
also trained, such as a 2-layer, 25-node neural network was trained. Tables 5.8 and 5.9 show the
training and validation data for the 25x25 neural network. Since the performance of this network
was only slightly better than the original neural network, it would make sense to use the original
neural network to minimize the processing power for each packet, thereby reducing the decision
time.

5.3 Optimizing Traffic using Binary Linear Program
To evaluate the effectiveness of our optimization model, referred to as OptimizingDemandsWith-
Gurobi in Section 3.3, we conducted experiments on various network typologies. To create these
network scenarios, we employed a random network generation approach that allowed us to generate
networks with different sizes and topologies.

For our evaluation, we generated random networks with 5, 10, 50, and 100 nodes, each repre-
senting unique challenges and characteristics. These networks were designed to emulate real-world
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Figure 5.4: Sample Gurobi Topology

scenarios, where nodes represent network devices and links represent connections between them.
In our optimization process, we utilized the powerful optimization solver Gurobi. By leverag-

ing Gurobi’s optimization capabilities within our OptimizingDemandsWithGurobi model, we were
able to determine optimal routing decisions while considering factors such as network congestion
and link capacity. This approach enabled us to assess the scalability and performance of our model
across a wide range of network sizes and topologies.

By comparing the routing decisions produced by our OptimizingDemandsWithGurobi model
against the default shortest-path routing, we could evaluate the effectiveness of our approach in
improving network performance and resilience.

5.3.1 Network Topologies
In order to assess the effectiveness of our optimization model, we conducted a series of experiments
on various network typologies. We purposely selected networks of different sizes to evaluate both
the scalability and performance of our approach. Specifically, we executed the optimization library
on networks comprising 5, 10, 50, and 100 nodes.

As an illustrative example, Figure 5.4 showcases the 5-node topology that we utilized for this
evaluation. This particular topology was thoughtfully designed to incorporate multiple paths be-
tween any source and destination within the network. By incorporating these alternative routes, we
aimed to maximize the network’s robustness and fault tolerance, enabling efficient rerouting in the
event of potential disruptions.

To thoroughly examine the impact of our optimization approach, we replicated these experi-
ments across networks of varying scales. We started with a small-scale network of 5 nodes, pro-
gressively increasing the complexity and size of the networks to 10, 50, and finally 100 nodes.
This systematic exploration allowed us to evaluate how well our model adapted and performed
in different network scenarios. By running our Gurobi optimization model on these diverse net-
work typologies and comparing its routing decisions with the non-optimized shortest path routing,
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we were able to assess the efficacy and efficiency of our approach. These experiments provided
valuable insights into the scalability and performance of our optimization model, enabling us to
fine-tune and improve its capabilities for real-world network deployments.

5.3.2 Methodology
Model Generation

The generation of our Gurobi optimization model was facilitated by employing a readily avail-
able script obtained from GitHub [35]. This script served as a powerful tool that streamlined the
process of creating the model by leveraging the network topology information provided to us. To
initiate the optimization process, we supplied the script with the network topology represented in
the graphML format. This format allowed us to conveniently capture the connectivity and relation-
ship between nodes in a structured and machine-readable manner. With the topology information at
hand, we executed the script, which commenced the generation of the Gurobi optimization model.
It is important to note that as the size of the network topology increased, the computational time
required for the Gurobi optimization process exhibited an exponential growth pattern. This obser-
vation is consistent with the inherent complexity associated with solving optimization problems on
larger networks. Nevertheless, despite the increased computational demand, the script efficiently
managed and executed the optimization tasks, producing the desired results.

Once the Gurobi optimization model was generated, the script produced two crucial output
files in CSV (Comma-Separated Values) format. The first output file contained the network sce-
narios, providing a comprehensive overview of the various potential configurations that could be
considered. Each scenario represented a different set of routing decisions, allowing us to explore
a wide range of possibilities for optimizing the network’s resilience against crossfire attacks. The
second output file contained information about the available paths within the network. This file
captured the viable routes and their respective characteristics, such as latency, bandwidth, or any
other relevant metrics. By having access to this data, we gained valuable insights into the network’s
existing capabilities and potential routing options. This information formed the basis for evaluat-
ing the performance and effectiveness of different routing decisions within the generated network
scenarios.

Routing using Ryu

Once the Gurobi optimization model was generated and the output CSV files containing network
scenarios and available paths were obtained, further steps were taken to convert this data into a
format that could be understood by Mininet and Ryu. To accomplish this, we employed a data
processing script designed specifically for this purpose. The data processing script was responsi-
ble for parsing the CSV files and transforming the relevant information into a format compatible
with Mininet and Ryu. This involved extracting details about the network topology, routing de-
cisions, available paths, and any other pertinent data required for network emulation and control.
The output from the data processing script was then piped into our custom Ryu controller. Ryu
is an open-source software-defined networking (SDN) framework that enables the development of
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network applications and controllers. By directing the processed data to the Ryu controller, we es-
tablished the necessary communication and control between the simulated network and the Gurobi
optimization model.

Following the setup of the Ryu controller, we utilized theMininet auto-net script to facilitate the
creation and teardown of network scenarios for each of the generated network configurations. The
auto-net script, located in Appendix A.1, played a crucial role in automating the deployment and
management of the network scenarios. The auto-net script operated in a sequential manner. First,
it initiated the Ryu controller, establishing the control plane for the network. Subsequently, it trig-
gered the network creation process within Mininet, deploying the network infrastructure based on
the specified topology and routing decisions obtained from the Gurobi optimization model. Once
the network was successfully launched, the auto-net script proceeded to execute the defined traffic
scenarios for a predetermined duration. This entailed simulating the traffic flows, emulating net-
work communication, and monitoring the performance and behavior of the network under various
conditions. Throughout this process, bandwidth measurements were recorded using the iperf tool,
allowing us to quantitatively assess the network’s performance in terms of data transfer rates.

Upon completing the specified duration for each traffic scenario, the auto-net script initiated
the network teardown process. This involved dismantling the virtual network infrastructure created
within Mininet, ensuring the resources were released and made available for subsequent scenarios.
Concurrently with the execution of network scenarios, the auto-net script continuously captured
and recorded the bandwidth measurements obtained from the iperf tool. This data was vital for
evaluating the impact of different routing decisions on the network’s performance, enabling us to
compare and analyze the efficiency and effectiveness of the Gurobi optimization model.

5.3.3 Results
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Figure 5.5: Network Bandwidth

For the 5 node network, the results of the Gurobi optimization are presented in Figure 5.5.
The graph illustrates the performance comparison between the Gurobi-optimized network and the
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Table 5.10: Traffic Demands by Network Scenario

Network Scenario Total Bandwidth (Mbps) Average Bandwidth (Mbps)
0 3.548 0.142
1 29.833 1.193
2 48.407 1.936
3 109.075 4.363
4 153.473 6.139
5 222.560 8.902
6 257.327 10.293
7 282.930 11.317
8 289.446 11.578
9 362.989 14.520
10 442.276 17.691
11 514.479 20.579
12 550.033 22.001
13 591.462 23.658
14 619.085 24.763
15 686.898 27.476
16 764.495 30.580
17 825.347 33.014
18 831.233 33.249

19-39 855.173 34.207

simple network configuration. Initially, for network scenarios 1-10, both the Gurobi optimized
network and the simple network exhibit similar performance. This similarity can be attributed to
the low overall load on the network during these scenarios. As the network scenarios progress,
the overall load gradually increases. In the initial scenarios, the shortest path in the network is
not fully saturated, resulting in the Gurobi optimization making the same routing decisions as the
simple network. However, beyond scenario 10, the Gurobi-optimized network begins to outper-
form the simple network. This improvement can be attributed to the fact that as the network load
increases, the shortest path may no longer be the fastest path due to link saturation. The Gurobi op-
timization algorithm considers alternative routing decisions that alleviate congestion and improve
overall network performance.

Table 5.10 details the network load for each network scenario in our experiment. The “Total
Demand (Mbps)” column represents the total amount of traffic demand in megabits per second
(Mbps), while the “Average Demand (Mbps)” column represents the average demand per scenario.
Starting from network scenario 0, the total demand gradually increases. In scenario 0, the total
demand is 1.43075 Mbps, with an average demand of 0.05723 Mbps. As we progress through
the network scenarios, both the total demand and average demand continue to rise. By network
scenario 19, the network becomes fully saturated, with a total demand of 344.82785 Mbps and an
average demand of 13.793114 Mbps. In this state, further network scenarios do not increase the
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total demand but rather alter the traffic distribution without changing the overall demand. The data
in Table 5.10 provides insights into the increasing network load as the scenarios progress, allowing
for a comprehensive understanding of the network’s capacity and the demands placed upon it.

Toward the end of the experiment, the Gurobi-optimized network achieves significantly higher
bandwidths compared to the simple network. Specifically, the Gurobi optimization achieves band-
widths of 120 Mbps, while the simple network only achieves around 40 Mbps. This represents a
substantial increase in throughput, with the Gurobi optimization resulting in over a three-fold im-
provement in bandwidth. By enhancing the overall throughput and robustness of the network using
identical infrastructure, the Gurobi optimization demonstrates its effectiveness in maximizing net-
work performance. It identifies alternative routing decisions that consider the network’s current
state and load distribution, leading to improved bandwidth utilization and reduced congestion.

Unfortunately, when attempting to apply the Gurobi optimization to larger networks, technolog-
ical challenges were encountered. The Mininet simulator and Ryu controller experienced crashes,
preventing the execution of the optimization on these larger network configurations. Despite ef-
forts to resolve these issues, the lack of documentation and time constraints limited the ability to
address and overcome these problems.
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Chapter 6

Conclusion & Future Work

As availability attacks grow in complexity, scale, and number, additional research is needed to cre-
ate methods to defend against such attacks. One attack, the crossfire attack, is particularly difficult
to detect as adversarial traffic flows are currently indistinguishable from legitimate traffic flows.
The holistic flow perspective granted by software-defined networks may assist in detecting such
an attack. The proposed thesis aims to find a novel method of detecting a crossfire attack. Current
methods treat attacks and legitimate flashmobs the same, causing issues when a large influx of users
attempt to connect to a site legitimately. The crossfire attack continues to be virtually undetectable
since no end nodes are being targeted.

In this thesis, we have explored the field of network traffic engineering and its significance
in ensuring efficient and optimized utilization of network resources. We have examined the chal-
lenges faced by network operators in managing traffic flow, load balancing, resource efficiency,
and scalability, and we have discussed the potential benefits of using optimization solvers such as
Gurobi in addressing these challenges. Through our analysis, we have identified the powerful op-
timization capabilities offered by Gurobi and how they can contribute to traffic flow optimization,
load balancing, resource efficiency, and scalability in network traffic engineering. By formulating
mathematical models and leveraging Gurobi’s algorithms and solver technologies, network opera-
tors can achieve optimal traffic routing, resource allocation, and utilization, resulting in improved
network performance, reduced latency, and enhanced user experience.

However, we have also acknowledged certain drawbacks associated with using Gurobi in traffic
engineering. The complexity of model formulation, computational resource requirements, solution
interpretation, dependency on accurate problem formulation, licensing costs, and learning curve are
important considerations that network operators need to take into account when adopting Gurobi
or any commercial optimization solver.

Additionally, we have presented a case study involving a crossfire attack on a simulated net-
work environment. By executing the attack and analyzing the network’s responsiveness, we have
demonstrated the detrimental impact of such attacks on network performance and stability. The re-
sults highlighted the increase in ping round trip times, indicating the strain on network resources and
the subsequent degradation of performance. Furthermore, we discussed the challenges of detecting
crossfire attacks, particularly in encrypted HTTPS traffic. By analyzing packet headers and em-
ploying statistical analysis techniques such as ANOVA, researchers can classify adversarial traffic
based on header information, contributing to the development of effective detection mechanisms.

In conclusion, network traffic engineering plays a crucial role in optimizing network perfor-
mance, resource utilization, and user experience. Optimization solvers like Gurobi offer powerful
capabilities to address complex traffic management challenges. However, careful consideration of
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the associated drawbacks and challenges is necessary. By conducting experiments, collecting and
analyzing data, and employing advanced analytical techniques, we can enhance our understand-
ing of network behavior and develop effective strategies to detect and mitigate adversarial traffic.
These findings contribute to the field of network traffic engineering and can aid network operators
in building more robust and efficient network infrastructures.

Future Work

Future work can be broken into a few different research areas:

1. Enhancing Attack Detection: While the developed neural network model shows promising
results in classifying adversarial packets based on header information, further research can
focus on improving the accuracy and robustness of the detection system. This can involve ex-
ploring additional features or variables in the packet headers that can provide better discrim-
ination between normal and adversarial traffic. Additionally, the model can be fine-tuned
and optimized to handle specific network conditions or attack patterns more effectively.

2. Handling Congested Links and Delays: The ANOVA-based model exhibited limitations
in scenarios with significant delays or congested links, potentially leading to false positives
or exacerbating network congestion. Future work can address these challenges by develop-
ing more adaptive models that can dynamically adjust their classification thresholds based
on network conditions. Advanced techniques, such as reinforcement learning or adaptive
algorithms, can be explored to enhance the model’s ability to handle varying network envi-
ronments.

3. Real-time Detection and Response: The experiment primarily focused on the offline analy-
sis of packet headers. To make the detection system more practical, future work can explore
real-time detection and response mechanisms. This can involve integrating the detection
model into network devices or controllers to continuously monitor network traffic and iden-
tify crossfire attacks in real-time. Efficient mechanisms for immediate response and mitiga-
tion can also be developed to minimize the impact of such attacks on network performance.

4. Network Robustness Optimization: The Gurobi optimization library was mentioned as a
potential approach to enhance network robustness against crossfire attacks. Further work can
explore different optimization techniques and strategies to identify optimal network configu-
rations that maximize throughput and minimize vulnerabilities. This can involve considering
various factors, such as link capacity, routing protocols, network topology, and traffic pat-
terns, to design resilient networks that can withstand crossfire attacks and other forms of
adversarial activities. Additionally, additional work would be needed to fix the problems
with our current implementation on larger networks.

5. Evaluation on Real-world Networks: The experiment was conducted on a simulated net-
work environment. To validate the effectiveness and applicability of the proposed methods,
future work should involve conducting experiments on real-world networks. By analyzing
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network traffic and conducting experiments in diverse environments, the detection and de-
fense mechanisms can be evaluated for their performance, scalability, and adaptability. Real-
world evaluations can also provide insights into the practical challenges and limitations of
the proposed approaches.

6. Collaborative Defense Strategies: Crossfire attacks can have severe consequences on net-
work performance and stability. Future research can explore collaborative defense strate-
gies, where multiple network entities, such as switches, routers, and SDN controllers, work
together to detect and mitigate crossfire attacks. Collaborative approaches can leverage the
collective intelligence and resources of the network to identify attack patterns, share infor-
mation, and coordinate response actions more effectively.

7. Adaptive and Self-learning Systems: As attackers constantly evolve their techniques, fu-
ture work can focus on developing adaptive and self-learning systems that can continuously
analyze network traffic, detect new attack patterns, and dynamically update defense mech-
anisms. Machine learning and AI algorithms can be employed to build intelligent systems
that can autonomously adapt to emerging threats and improve their detection and response
capabilities over time.

8. Privacy and Ethical Considerations: With the increasing reliance on network monitoring
and analysis for attack detection, future research should also address privacy and ethical
considerations. Developing techniques that can effectively detect and mitigate attacks while
protecting user privacy and ensuring compliance with legal and ethical norms is crucial.
Striking the right balance between network security and privacy preservation is an important
area for further exploration.

By addressing these future research directions, the field can advance the detection and defense
mechanisms against crossfire attacks, improving network security and resilience in the face of
evolving threats.

54



Appendix A

Networking Scripts

These scripts were used to run the MiniNet simulations for the Gurobi-optimized routing decisions.

A.1 Auto Network Script

1 #!/usr/bin/env python
2
3 import multiprocessing
4 import os
5 import shutil
6 import time
7 import logging
8 from runNetwork import myNetwork
9 def main():
10 logging.basicConfig(level=logging.DEBUG)
11 for i in range(0, len(os.listdir("TR"))):
12 if os.path.exists("TR.txt"):
13 os.remove("TR.txt")
14 shutil.copy(f"TR/TR_{i}.txt", "TR.txt")
15 if os.path.exists("/home/mininet/ryu/app/FL.txt"):
16 os.remove("/home/mininet/ryu/app/FL.txt")
17 shutil.copy(f"FL/FL_{i}.txt", "/home/mininet/ryu/app/FL.txt")
18 process1 = multiprocessing.Process(target=runRyu)
19 process2 = multiprocessing.Process(target=runNetwork, args=(i,))
20 print(f"Starting Iteration {i}")
21 process1.start()
22 time.sleep(2)
23 process2.start()
24 process2.join()
25 process1.terminate()
26 process1.join()
27 print("PROCESS KILLED")
28 os.system("mn -c")
29 print(f"Ending Iteration {i}")
30 i += 1
31 def runRyu():
32 os.system("cd ~/ryu/app && ryu-manager multi.py --observe-links")
33
34 def runNetwork(i):
35 if not os.path.exists(f"DELAY/DELAY_{i}"):
36 os.makedirs(f"DELAY/DELAY_{i}")
37 myNetwork(i)
38
39 if __name__ == "__main__":
40 main()

A.2 Mininet Script
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1 #!/usr/bin/python
2
3 from mininet.net import Mininet
4 from mininet.node import Controller, RemoteController, OVSController
5 from mininet.node import CPULimitedHost, Host, Node
6 from mininet.node import OVSKernelSwitch, UserSwitch
7 from mininet.node import IVSSwitch
8 from mininet.cli import CLI
9 from mininet.log import setLogLevel, info
10 from mininet.link import TCLink, Intf
11 from subprocess import call
12 import time
13 import csv
14 import numpy as np
15 TRAF_File = "TR.txt"
16 REFERENCE_BW = 128
17 PORT = 1025
18 def myNetwork(iterationnum):
19 T_VALUE = 10
20 TRAF_File = "TR.txt"
21 REFERENCE_BW = 128
22 PORT = 1025
23 net = Mininet( topo=None,
24 build=False,
25 ipBase='10.0.0.0/12',
26 autoSetMacs = True
27 )
28
29 info( '*** Adding controller\n')
30
31 c0 = net.addController(name='c0',
32 controller=RemoteController,
33 ip='127.0.0.1',
34 protocol='tcp',
35 port=6633)
36
37 info( '*** Add switches\n')
38
39 S1 = net.addSwitch('S1', cls=OVSKernelSwitch, dpid='0000000000000001')
40 S2 = net.addSwitch('S2', cls=OVSKernelSwitch, dpid='0000000000000002')
41 S3 = net.addSwitch('S3', cls=OVSKernelSwitch, dpid='0000000000000003')
42 S4 = net.addSwitch('S4', cls=OVSKernelSwitch, dpid='0000000000000004')
43 S5 = net.addSwitch('S5', cls=OVSKernelSwitch, dpid='0000000000000005')
44 info( '*** Add hosts\n')
45
46 H1 = net.addHost('H1', cls=Host, ip='10.0.0.1', defaultRoute=None)
47 H2 = net.addHost('H2', cls=Host, ip='10.0.0.2', defaultRoute=None)
48 H3 = net.addHost('H3', cls=Host, ip='10.0.0.3', defaultRoute=None)
49 H4 = net.addHost('H4', cls=Host, ip='10.0.0.4', defaultRoute=None)
50 H5 = net.addHost('H5', cls=Host, ip='10.0.0.5', defaultRoute=None)
51 info( '*** Add links\n')
52
53 local_link = {'bw':1000.0, 'delay':'0ms'}
54 net.addLink(S1, H1, cls=TCLink, **local_link)
55 net.addLink(S2, H2, cls=TCLink, **local_link)
56 net.addLink(S3, H3, cls=TCLink, **local_link)
57 net.addLink(S4, H4, cls=TCLink, **local_link)
58 net.addLink(S5, H5, cls=TCLink, **local_link)
59
60 CityLink2 = {'bw':128.0, 'delay':'5.8229ms'}
61 net.addLink(S1, S2, cls=TCLink, **CityLink2)
62 net.addLink(S1, S4, cls=TCLink, **CityLink2)
63 net.addLink(S1, S5, cls=TCLink, **CityLink2)
64 net.addLink(S2, S3, cls=TCLink, **CityLink2)
65 net.addLink(S2, S4, cls=TCLink, **CityLink2)
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66 net.addLink(S2, S5, cls=TCLink, **CityLink2)
67 net.addLink(S3, S5, cls=TCLink, **CityLink2)
68 net.addLink(S3, S4, cls=TCLink, **CityLink2)
69 info( '\n*** Starting network\n')
70
71 net.build()
72 net.start()
73 info( '\n*** Post configure switches and hosts\n')
74
75 S1.cmd('ifconfig S1 10.0.8.1')
76 S2.cmd('ifconfig S2 10.0.8.2')
77 S3.cmd('ifconfig S3 10.0.8.3')
78 S4.cmd('ifconfig S4 10.0.8.4')
79 S5.cmd('ifconfig S4 10.0.8.5')
80 readCSV(net, iterationnum)
81 net.stop()
82 def readCSV(net, iterationnum):
83 PORT = 1025
84 info("STARTING TRAFFIC FLOWS\n")
85 arr = np.loadtxt(TRAF_File).tolist()
86 for i in range(len(arr)):
87 for j in range(len(arr[i])):
88 if arr[i][j] == 0:
89 continue
90 bw = REFERENCE_BW * arr[i][j] * 4
91 net.get(f"H{j+ 1}").cmd(f"iperf -S -u -p {PORT} -D")
92 net.get(f"H{i + 1}").cmd(f"iperf -c 10.0.0.{j + 1} -u -p {PORT} -t 60 -r -d -b {

REFERENCE_BW * 4 * arr[i][j]}M | grep -Po '[0-9.]*(?= Mbits/sec)'> DELAY/DELAY_{iterationnum
}/H{j+ 1}_H{i+ 1}.txt &")

93 PORT += 1
94 time.sleep(65)
95 if __name__ == '__main__':
96 setLogLevel( 'info' )
97 myNetwork()
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