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Abstract—Rapid advancement in generative AI and large
language models (LLMs) has enabled the generation of highly
realistic and contextually relevant digital content. LLMs such
as ChatGPT with DALL-E integration and Stable Diffusion
techniques can produce images that are often indistinguishable
from those created by humans, which poses challenges for
digital content authentication. Verifying the integrity and origin
of digital data to ensure it remains unaltered and genuine is
crucial to maintaining trust and legality in digital media. In
this paper, we propose an embedding-based Al image detection
framework that utilizes image embeddings and a vector similarity
to distinguish Al-generated images from real (human-created)
ones. Our methodology is built on the hypothesis that Al-
generated images demonstrate closer embedding proximity to
other Al-generated content, while human-created images cluster
similarly within their domain. To validate this hypothesis, we
developed a system that processes a diverse dataset of Al and
human-generated images through five benchmark embedding
models. Extensive experimentation demonstrates the robustness
of our approach, and our results confirm that moderate to high
perturbations minimally impact the embedding signatures, with
perturbed images maintaining close similarity matches to their
original versions. Qur solution provides a generalizable frame-
work for Al-generated image detection that balances accuracy
with computational efficiency.

Index Terms—Al-generated image, generative Al, image de-
tection, embedding, vector similarity

I. INTRODUCTION

Generative Al and large language models (LLMs), such as
ChatGPT [1], have rapidly advanced, enabling the creation
of human-like text and highly realistic images from simple
prompts. Diffusion models like DALL-E, Imagen, Stable Dif-
fusion, and Midjourney have transformed image generation,
producing diverse outputs in seconds [2], [3]. As these models
grow more sophisticated, their outputs become increasingly
difficult to distinguish from human-made content, creating new
challenges for detecting Al-generated material.

The proliferation of Al-generated content poses serious
concerns across creative and informational domains, as these
models can mimic human artistic styles [4], [5] and potentially
undermine the value of original works [6]. High-profile inci-
dents have already sparked debate about AI’s role in art [7]
and its potential to spread disinformation through convincingly
fake imagery [8]. Although progress has been made in Al-
generated image detection, most existing methods are tailored
to specific models (e.g., GANs or diffusion models) and often
fail to generalize across newer versions [9], [10]. Recent stud-

ies also highlight the limitations of watermarking techniques,
which remain vulnerable to evasion [11], underscoring the
need for more adaptable and robust detection approaches.

Several recent studies have attempted to improve detection
methods by exploring forensic traces, embedding-based clas-
sification, and hybrid strategies. Corvi et al. [12] analyzed
synthetic image artifacts left by diffusion models and observed
that detector performance varied widely across different gen-
erators, especially after common post-processing operations
like compression and resizing. Ojha et al. [13] proposed using
the CLIP-ViT embedding space for nearest-neighbor and linear
classification, demonstrating improved accuracy on unseen dif-
fusion models, although their method was less robust to heavy
manipulations. Baraheem et al. [14] achieved 100% accuracy
on a custom dataset using EfficientNetB4 and Class Activation
Maps, but the method’s dependency on curated training data
limits its generalizability. Martin et al. [15] combined forensic
methods like PRNU and Error Level Analysis with CNNs,
achieving strong precision but with limitations in image format
support and adversarial robustness. These studies highlight
the need for more generalizable and manipulation-resilient
detection systems.

Motivated by these limitations, our work introduces a de-
tection system that avoids heavy model training and instead
leverages robust image embeddings and vector similarity to
identify synthetic content. To address these challenges, we
present the EmbedAlDetect system—a lightweight, training-
free detection mechanism that determines whether an image
is Al-generated using embedding similarity. Our approach
leverages a Vision Transformer-based embedding model in
combination with a vector database to compare incoming
images against a reference set. To enhance transparency and
tamper-resistance, the system also integrates blockchain-based
verification. The solution is deployed as a web application
with a user-friendly interface. The main contributions of this
research are:

« Provides a resource-efficient, training-less Al image de-
tection system that utilizes a similarity score to determine
the authenticity of images.

« Identifies and implements a suitable embedding technique
that is generalizable and resistant to intentional manipu-
lations and post-adversarial tampering attacks.

« Integrate vector databases with embedding model and
blockchain to maintain a tamper proof record of embed-
dings enhancing integrity of the detection system for real-
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time purposes.

II. SYSTEM DESIGN

The paper presents the framework designed to integrate
vector databases with the embedding model and a user-friendly
interface. The framework implements a step-by-step pipeline
for analyzing whether an unseen (uploaded) image might be
Al-generated. Figure 1 illustrates the architecture design for
the system. It provides a user interface to upload a photo and
check the results. The results are based on the embedding
vectors that are stored in the vector database. A detailed walk-
through of each component and its interaction is described in
the following.
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Fig. 1: System architecture for EmbedAlDetect

A. System Components

1) Embedding Model: The system uses a Vision Trans-
former (ViT) model from the DINOv2 framework [16], im-
plemented using Hugging Face’s transformers library.
A custom embedding function is built using AutoModel
and AutoProcessor, which preprocesses input images into
tensors for the model to interpret. The model runs on a GPU
and outputs patch-level hidden states, which are averaged to
produce a single high-dimensional vector embedding. This
embedding is moved to CPU memory, converted into a NumPy
array, and flattened into a Python list to ensure compatibility
with the vector databases for similarity search and storage.

2) Vector Database: We use ChromaDB [17], an open-
source vector database optimized for similarity search in
high-dimensional spaces. The system initializes it using
PersistentClient, with collections configured for Al-
generated and human-generated image embeddings. Each col-
lection is linked to a custom embedding function based on
the DINOv2 model and uses cosine distance as the similarity
metric. When a user uploads an image, its embedding is
computed and used to query the database for the top-k closest
matches. ChromaDB handles both embedding storage and
retrieval, while a backend script processes the results and
displays them to the user via the Streamlit interface.

3) Blockchain Setup: Blockchain provides a decentralized
and tamper-resistant way to store data, particularly useful for
verifiable systems [18]. In this project, the Ethereum network
was selected for its mature ecosystem and support for smart
contracts. Two Solidity-based contracts—HashStorageAl
and HashStorageHuman—were developed with identical
logic, each exposing functions to store and verify 256-bit
hashes of image embeddings. These contracts were tested
using Hardhat and deployed to the Sepolia testnet, se-
lected for its Proof-of-Stake consensus and compatibility
with Ethereum’s mainnet. Backend integration is managed
through a custom Python wrapper using the Web3.py li-
brary, which enables interaction with the contracts and pro-
vides application-level methods like store_hash () and
check_hash_exists (). MetaMask handles secure trans-
action signing and private key management during blockchain
operations.

4) Web Application: The web application serves as the
user-facing layer that integrates the embedding model, vec-
tor database, and blockchain verification components into
a unified workflow. Built using Streamlit [19], it provides
a simple and responsive interface through which users can
upload images for analysis. Once an image is uploaded, the
system processes it using the DINOv2 model to generate an
embedding, which is then compared against stored vectors in
ChromaDB using cosine similarity to estimate whether the
image is Al-generated or human-generated. Simultaneously,
a 256-bit hash of the embedding is computed and checked
against Ethereum smart contracts to determine if it has been
previously recorded on-chain. The application consolidates the
similarity-based classification and blockchain verification into
a single output, presenting users with both the prediction result
and its verifiability in a clear and accessible manner.

B. System Implementation

The EmbedAlDetect system is developed through three
distinct frameworks, each building upon the capabilities of the
previous one. This progressive development approach demon-
strates how each framework was conceptualized, implemented,
and refined to advance toward the final integrated solution.
Each version introduces new components—starting from a
blockchain-only setup, to incorporating a vector database for
similarity search, and finally combining both for verification
and classification. Detailed flowcharts and explanations for
each framework are provided in the following sections to
illustrate the application logic and architectural decisions.

1) Framework 1: Blockchain only: The first approach as
shown in Figure 2, the system leverages blockchain technology
to store and verify image embeddings using smart contracts.
Two separate smart contracts are deployed: one named Hash-
StorageAl for Al-generated image hashes, and another named
HashStorageHuman for human-generated image hashes. The
image embeddings are generated using the DINOv2 model,
and these embeddings are then converted into 256-bit hash
values. These hashes are immutably stored on the blockchain
to serve as reference data for later verification.

The application begins by initializing arrays for storing
Al and human image data. A dataset of 7,000 Al-generated
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Fig. 2: Application setup and data flowchart for blockchain
only framework of EmbedAlIDetect

images and 7,000 human-generated images is processed. For
each image, an embedding is generated using the DINOv2
model, which is then hashed into a 256-bit value. The im-
age known to be Al-generated, their hash is stored in the
HashStorageAl smart contract; otherwise, it’s stored in the
HashStorageHuman contract. When a new image is uploaded
for verification, the system generates its embedding and hash,
then checks for a match in both smart contracts. A match in
HashStorageAl indicates the image is Al-generated, while a
match in HashStorageHuman indicates it’s human-generated.
If no match is found, the result is not determined.

2) Framework 2: Vector Database only: The second ap-
proach as shown in Figure 3 utilizes a vector database, specif-
ically ChromaDB, to store and compare image embeddings.

Two separate collections are created: one for Al-generated
images and another for human-generated images. The system
uses the DINOv2 model to extract vector embeddings from
images. Each embedding, along with metadata, is stored in the
corresponding collection based on the image’s classification
as Al or human. This approach facilitates efficient similarity
searches based on vector distances during inference.

The application starts by initializing two collections in
ChromaDB: one for Al images and one for human images.
A dataset of 7,000 Al-generated and 7,000 human-generated
images is processed. Each image is converted into a vector
embedding using the DINOv2 model, and this embedding,
along with relevant metadata, is added to the appropriate
collection based on the image type. When a new image is
uploaded, the system generates its vector embedding and
performs similarity queries against both collections. It then
compares the distances: if the embedding is closer to the
Al collection, the image is classified as likely Al-generated;
otherwise, it’s labeled as likely human-generated.

3) Framework 3: Hybrid Approach: The third approach,
which is the hybrid method shown in Figure 4 combines
blockchain-based verification with a vector database similarity
search to enhance both the accuracy and integrity of Al-
generated image detection. The setup begins by initializing
two collections in ChromaDB: one for Al-generated images
and the other for human-generated images. Simultaneously,
two smart contracts—HashStorageAl and HashStorageHu-
man—are deployed on the blockchain to store 256-bit hashes
of image embeddings. A dataset of 7,000 Al-generated and
7,000 human-generated images is processed: each image is
passed through the DINOv2 model to extract an embedding.
This embedding is stored as a vector in the respective Chro-
maDB collection along with metadata, and also hashed and
stored immutably on the blockchain in the corresponding smart
contract.

When a new image is uploaded, its embedding is generated
using the DINOv2 model. This embedding is used to query
both ChromaDB collections to retrieve the closest matching
vectors—one from the Al set and one from the human set.
The distances between the uploaded image and each match
are compared: if the image is closer to the AI collection, it
is classified as likely Al-generated; otherwise, it is labeled
as likely human-generated. In parallel, the 256-bit hash of
the image embedding is computed and checked against both
HashStorageAl and HashStorageHuman. If a match is found
in either contract, the classification is deemed verifiable on-
chain. If no match exists, the result is not verifiable, though
the classification can still be inferred through vector similarity.

III. EVALUATION

To rigorously assess the performance and robustness of
EmbedAlDetect, we designed a comprehensive experimental
framework focused on evaluating the role of vector em-
beddings in detecting Al-generated images. This framework
investigates the identification and implementation of an em-
bedding technique that is generalizable and resilient to de-
liberate manipulations. The experimental setup consists of



¢

[ Get 7000 Al images and 7000 human images}

[Initialize Al'and human image collection]

if counter < total_images

Yes
[ Get embedding vector of image using DINOv2 model

ncrement the [
counter by 1
\l(es if Al_image No

Store image data in the Store image data in the
ai_collection human_collection

7 I

(a) Embeddings storage in separate collections in ChromaDB
vector database flowchart

I Construct image metadata ]

—

Upload Image

[ Get vector embedding of the image }
)

Query Al_collection and human_collection with the embedding

{ Find closest match ]

if ai_distance <

No human_distance

Likely Human

Yes

Likely Al

(b) Image classification process using vector similarity search
in ChromaDB

Fig. 3: Application setup and data flowchart for the vector
database only framework of EmbedAIDetect

three key studies: first vector similarity-based classification for
detection, second that benchmarks various embedding models
to determine their effectiveness under adversarial conditions,
and lastly, estimation of gas usage while using smart contracts.

All experiments were carried out in a high performance
computing environment equipped with an Intel Core i9-
14900K CPU, 66 GB of RAM, and an NVIDIA GeForce RTX
4090 GPU to ensure efficient handling of computationally
intensive tasks. To evaluate the blockchain integration aspects
of the system, we used Hardhat, a widely adopted Ethereum
development framework, to simulate gas usage and smart
contract interactions in a controlled environment.
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A. Vector similarity based classification

The goal of this experiment is to evaluate the feasibility and
accuracy of using vector embeddings and cosine similarity
metrics to differentiate between Al-generated and human-
captured images. Whether Al-generated or human-created,
both images exhibit unique patterns in their embeddings when
passed through a pre-trained image classification model.

We constructed a diverse data set that encompasses real and
Al-generated images, except human faces. It consists of 9,000
Al-generated images and 6,074 human-created art images.
The AI images are created using the Stable Diffusion 3.5
Medium model provided by Stability Al and is available on
the Hugging Face platform. The images are generated at a
fixed resolution of 512 x 512 to balance quality and generation
time. The Al images are generated using systematically crafted
prompts combining various themes, subjects, and styles, while
the human dataset is sourced from the Kaggle art-images
collection, carefully curated to remove corrupted and duplicate
entries.

Below are representative examples of prompts used to
generate Al images:

o “A tropical floating islands in glitch art style”

« “A biotechnological deep space in photorealistic style”
o “A time travel rainforest canopy in psychedelic art style”
¢ “A neon concert hall in low poly style”

e “A mystical art studio in neon style”

The sample images are shown in Figure 5 below, illustrate
the dataset’s nature and types of manipulations applied, pro-
viding insight into how the system evaluates and identifies
Al-generated content.

Our methodology implements a novel classification pipeline
utilizing vector embeddings extracted through an embedding
model. We stored vector embeddings of generated Al im-
ages and human-created art images in the Pinecone vector
database. Separated partitions are created for training and
testing datasets split in a 4:1 ratio. The closest distance for
each testing image in both the Al image training set and
the human training set is calculated and stored in spread-
sheets. The nearest distance is calculated using the similarity
search and cosine distance as a metric. The experiment is
done repeatedly using five pre-trained models: OpenAl CLIP
(512-dimensional embeddings), Google ViT (768-dimensional
embeddings), Facebook DINOv2 (768-dimensional embed-
dings), Microsoft ResNet-50 (2048-dimensional embeddings),
and Apple AIMv2 (1024-dimensional embeddings). We used
separate indexes for each embedding model with name-space
partitioning for training and testing data sets to store the vector
embeddings. The two spreadsheets one of ai image test set and
other of human image test set are used to calculate confusion
matrix based on the classification algorithm below, which is
the main hypothesis the detection system is based on.

1 ifd(z, A) <d(z,H)

0 if d(z, A) > d(z,H) M

Al or_not(z) = {

where;

x : supplied image embedding vector
A : set of Al-generated image embeddings
‘H : set of human-generated image embeddings

d(z,S) = mig{cosine_distance(x, s)}
s€

The experimental results demonstrated exceptional perfor-
mance across all models, as shown in Table I. CLIP achieved
the highest overall accuracy at 99.51% with near-perfect
precision (0.9935) and recall (0.998). AIMv2 demonstrated
consistent performance across all metrics, while ResNet-50
showed lower recall despite maintaining high precision. All
models except ResNet-50 maintained accuracy above 98%,
with confusion matrices revealing minimal misclassification
patterns.

TABLE I: Performance Metrics Across Embedding Models

Models Embedding Precision Recall Accuracy
Dimension

CLIP 512 0.9935 0.998 0.9951

Google VIT 768 0.988 0.987 0.9856

DinoV2 768 0.9881 0.9945 0.9899

ResNet 50 2048 0.9898 0.826 0.8948

AIMv2 1024 0.992 0.994 0.9919

B. Benchmarking different embedding models

The goal of this experiment is to evaluate the robustness
and consistency of different image embedding models when
faced with manipulations in input images. By systematically
modifying the original Al-generated images and comparing
their embeddings with the unaltered Al images, the exper-
iment answers if the embeddings differ entirely from their
original embeddings, thus validating the embedding technique
for image detection. We analyzed performance degradation
across two key dimensions: geometric modifications and blur
transformations. For geometric modifications, we applied both
single and multiple white patch overlays and resolution reduc-
tion.

The previous 9,000 Al-generated images were taken as
original images; for every modification (6 total modifications),
a set of 9000 modified images is stored separately. The vector
embeddings of all the modified images using the five embed-
ding models mentioned in experiment 1 are stored in different
Pinecone indexes. The nearest distance of modified images
from the original images (generated by Al) is calculated
using cosine similarity and stored in spreadsheets. The closest
distance is retrieved along with the metadata from the database
using the vector similarity search that includes the name of the
closest match image to compare whether the match returned
the same image from the original dataset. The accuracy of the
results for this evaluation is calculated as below.

Number of Correct Matches

Accuracy = x 100% (2)

Total Number of Images
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Fig. 5: Sample images from human-art dataset and Al-generated image dataset with various modifications

where a correct match occurs when the modified image’s
embedding is closest to its original Al image embedding

The results as summarized in Table II demonstrates that DI-
NOv2 maintains exceptional resilience to geometric changes,
achieving 100% accuracy with single patches of 128 by 128
pixels and 99.94% accuracy under resolution reduction to
128 by 128 pixels from 512 by 512 pixels. In contrast,
multiple patch overlays presented a more significant challenge,
particularly for the CLIP model, where accuracy decreased to
73.34%.

TABLE II: Model Accuracy (%) for Patch Overlays and Resize

Models Embedding 1 Patch  3-5 Patches Resize
Dimension

CLIP 512 97.26 73.34 98.04

Google VIT 768 99.88 91.62 98.98

DinoV2 768 100.00 99.62 99.94

ResNet-50 2048 99.89 84.02 98.47

AIMV2 1024 99.96 92.59 99.81

The blur analysis reveals a systematic relationship between
blur intensity and model performance, as detailed in Table
III. At low blur levels (20%), most models maintained ro-
bust performance, with DinoV2 achieving perfect accuracy
and both Google ViT and AIMv2 exceeding 99% accuracy.
However, as the blur intensity increased, we can observe a
consistent degradation pattern across all models, though at
varying rates. DinoV2 demonstrated remarkable resilience,
maintaining 88.44% accuracy even at 80% blur intensity,
significantly outperforming other models. In contrast, ResNet-
50, despite its larger embedding dimension of 2048, shows
the highest sensitivity to blur effects, with accuracy dropping
dramatically to 24.67% at 80% blur.

Our comprehensive evaluation yielded several insights for
the field. The exceptional performance across multiple em-
bedding models suggests that Al-generated images possess
consistent, detectable patterns in the embedding space, with
transformer-based models generally outperforming traditional
CNN architectures like ResNet 50. Also, larger embedding
dimensions did not necessarily correlate with better perfor-

TABLE III: Model Accuracy (%) Under Various Blur Inten-
sities

Models Embedding Blur Intensity
Dimension 20% 40% 60% 80%
CLIP 512 96.68 8096 48.12  30.02
Google ViT 768 99.86  96.00 84.17 67.06
DinoV2 768 100.00  99.87 96.86 88.44
ResNet-50 2048 98.52 7418 4436 24.67
AIMv2 1024 99.65 96.81 90.08 80.13

mance, while model architecture significantly influenced ro-
bustness against different types of modifications.

C. Smart Contract Gas Usage Estimation

This experiment was designed to evaluate and compare the
gas consumption incurred when storing 256-bit embedding
hashes on the Ethereum blockchain using two different So-
lidity data types: uint256 and string. The purpose was
to empirically determine the gas efficiency of each approach,
which is critical when scaling decentralized applications that
store or verify large volumes of hashed data.

To empirically assess gas usage differences, two separate
Solidity smart contracts were implemented:

« HashStoragelnt: Stores the 256-bit image embedding

hash as uint256.

« HashStorageStr: Stores the same 256-bit hash as a

string.

Each smart contract included two core functions:
storeHash (input_hash) for storing a hash value
on the blockchain, and hashExists (input_hash) for
verifying whether a given hash is already present in the
contract’s storage.

Both contracts were developed and tested in a local Hardhat
Ethereum environment, where extensive unit tests were written
to validate the functionality. Subsequently, both contracts were
deployed on the Sepolia testnet, where transactions were
executed to measure real-world gas usage. Only 200 image
embedding hashes were stored on Sepolia due to constraints
in transaction time and limited gas availability.



Gas usage was recorded for each transaction involving the
storeHash (input_hash) function in both contracts.
The summarized statistics are provided in Table IV. These
findings clearly show that storing a 256-bit embedding hash
as a uint256 is approximately 2.7 times more gas efficient
than storing it as a string.

TABLE IV: Gas Usage Statistics for Hash Storage Using
uint256 and string

Statistic Gas (uint256) Gas (string)
Count 9,000 transactions 9,000 transactions
Mean 36,207 gas 97,667 gas
Median 36,184 gas 97,667 gas
Minimum 21,528 gas 97,667 gas
Maximum 51,228 gas 97,667 gas

D. Framework Evaluation

To assess the practical performance of our Al image detec-
tion system, we developed and deployed a working prototype
capable of performing image classification based on stored
image embeddings and integration of smart contracts. The
goal of this evaluation is to understand how the system
behaves when given input images from the real world and
whether it can accurately categorize images as Al-generated
or human-generated. The prototype allows for uploading any
image, processes it through an embedding model, and returns
a classification result based on the similarity match with the
embeddings stored in the local database.

This evaluation phase focused not only on the overall
classification accuracy, but also on identifying potential limi-
tations, especially in diverse and uncontrolled image settings.
The prototype was subjected to various image categories to
simulate practical use cases. We specifically examined how the
system handles facial images (often generated by StyleGAN)
compared to non-facial or generic image categories, such as
artwork and nature.

1) Framework 1: Blockchain only Evaluation: To evaluate
the blockchain-only prototype, we conducted manual testing
using the system’s user interface by uploading individual
image files for classification. In this setup, the backend system
used a predefined dataset of 7,000 Al-generated images and
7,000 real (human) images. For each image, an embedding
was generated using the DINOv2 model, and a 256-bit cryp-
tographic hash of this embedding was computed and stored
on the Ethereum Sepolia test network via two dedicated smart
contracts: HashStorageAI for Al-generated images and
HashStorageHuman for real ones. When a new image
is uploaded, the system computes its embedding and hash,
then compares the hash against both smart contracts. If a
match is found in either contract, the image is classified
accordingly—AI or human—and marked as verifiable. Other-
wise, if no match exists, the system cannot make a definitive
classification, and the result is labeled as inconclusive.

Although functionally sound in design, this evaluation
method encountered several practical challenges due to lim-
itations inherent in on-chain data storage. Specifically, stor-
ing all 14,000 image hashes on the Ethereum blockchain
introduced high computational and financial overhead. Every

Fig. 6: StyleGAN-generated synthetic images used for Embe-
dAlIDetect prototype evaluation

transaction to add a hash to a smart contract incurs a gas
fee, and when many transactions are sent in rapid succession,
network congestion and rate limitations often lead to failed or
dropped transactions. From a technical standpoint, this results
in nonce conflicts, out-of-gas errors, or rate-limiting by the
node provider (Alchemy), thereby preventing the successful
storage of all intended hashes. Consequently, while every
image embedding was stored in the local vector database,
only a subset of those corresponding hashes could be reliably
registered on-chain. As a result, many uploaded images during
evaluation matched an embedding in the database but failed
the blockchain verification check—Ileading to false negatives in
verifiability. This limitation highlights the trade-offs between
blockchain transparency and system scalability, particularly in
use cases involving large-scale data operations.

2) Framework 2: Database only Evaluation: The second
prototype focused solely on embedding-based classification
using vector similarity search. Before formally evaluating
Prototype 2, we expanded the system’s internal database to
better support classification of facial images—an area where
the system initially struggled. We first introduced 10,000 high-
resolution Al-generated facial images created using Style-
GAN, sourced from https://thispersondoesnotexist.com/, into
the Al category. The model showed strong performance in
identifying similar StyleGAN images during testing, correctly
labeling over 90% of such inputs as synthetic. Some exam-
ples of correctly classified Al faces are shown in Figure 6.
However, this also led to a growing tendency to misclassify
real human faces as Al-generated, suggesting the embedding
space was becoming biased toward synthetic features.

To mitigate this issue, we integrated 1,441 real facial images
from the Chicago Face Database (CFD) [20], [21], [22] into
the human category. This addition provided more diversity in
real facial representations and slightly improved accuracy for
some real images during early tests. However, the underlying
issue persisted: the model continued to misclassify many
real human faces, particularly those with uniform lighting
and frontal poses, likely because of their visual similarity to
StyleGAN outputs. This imbalance in the database influenced
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how the system later performed during the formal evaluation
stage.

With the internal database prepared, we proceeded to
evaluate the prototype using two external datasets: (1)
CIFAKE [23], [24], which includes a wide range of non-facial
real and Al-generated images, and (2) 140k Real and Fake
Faces [25], which contains high-resolution facial images. The
goal was to evaluate how accurately the system could classify
input images as Al-generated or real based on similarity to
pre-stored embeddings using cosine distance. The system was
tested using Python scripts that emulated the classification
flow of the application, including embedding computation,
vector similarity querying, and prediction logging. Results
were saved in CSV format with fields such as filename, true
label, similarity scores, and predicted label. A snippet of this
output is shown in Table V.

TABLE V: Sample Prediction Output

Fil True Label H Sim.  AI Sim.  Pred. Label
0375 (7).jpg real 0.2266 0.1677 real
0838 (7).jpg real 0.2846 0.2476 real
0174 (5).jpg real 0.4529 0.5668 fake
0445 (3).jpg real 0.1606 0.1622 fake
0771 (9).jpg real 0.2502 0.3689 fake

We then computed standard classification metrics such as
accuracy, precision, recall, and F1-score, along with confusion
matrices, to assess how the system performed across both
facial and non-facial image categories.

3) Quantitative Results and Observations: On the CIFAKE
dataset, which contains objects, scenes, and non-facial art-
work, the system showed balanced performance. As shown
in Figure 7a, it correctly classified 6,194 out of 10,000 real
images and 4,792 out of 10,000 fake images. While not highly
accurate, the results indicate that the model can reasonably
distinguish between Al-generated and real content in general
image categories where visual patterns are more distinct and
less uniform.
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True label

4500
4792

2000

real fake

Predicted label Predicted label

(a) CIFAKE dataset (b) 140k Faces dataset

Fig. 7: Confusion matrices showing classification performance
of Prototype 2 using vector similarity search

In contrast, the evaluation on the 140k Real and Fake
Faces dataset highlighted significant limitations. As shown
in Figure 7b, the system correctly labeled most real facial
images (9,452 out of 10,000), but misclassified nearly all
fake faces: only 236 were correctly identified as Al-generated,
while 9,764 were incorrectly predicted as real. This imbalance
reflects a strong bias toward labeling facial content as real,
likely due to the embedding model’s inability to capture subtle

generative artifacts present in StyleGAN outputs, especially
when those features overlap with realistic cues found in the
CFD dataset.

These results reinforce a key insight: Although embedding-
based similarity is reasonably effective for broad semantic
differences (as seen in non-facial images), it falls short when
used to detect highly realistic facial forgeries. This gap di-
rectly influenced the decision to incorporate blockchain-based
verification in the hybrid prototype, with the aim of enhancing
confidence and trust in high-risk classifications.

4) Framework 3: Hybrid Approach Evaluation: Prototype
3 combines the embedding-based similarity classification from
Prototype 2 with the blockchain verification mechanism from
Prototype 1. As it does not introduce new classification logic,
but rather integrates existing components sequentially, first
identifying the closest match via vector similarity, then check-
ing its hash on-chain, no separate evaluation was conducted. Its
behavior and performance characteristics are directly inherited
from the earlier prototypes. The primary goal of this version
is to enhance trust and verifiability in the results, especially in
edge cases, by confirming that the matched embedding has an
immutable record on the blockchain. Although not formally
benchmarked, the hybrid workflow was manually validated
through the user interface and confirmed to work as expected.

The results suggest that the system accuracy increases with
the diverse data set, and important consideration includes nec-
essary trade-offs between processing efficiency and accuracy.
Our paper presents a concept that can be further used with
other image analysis techniques to determine the authenticity
of an image. This research has found that DINOv2’s superior
robustness makes it particularly suitable for applications where
image modifications are expected. Several areas relating to
image identification warrant further investigation, including
the impact of different Al generation models on detection
accuracy, effectiveness against adversarial modifications, scal-
ability with larger datasets, and performance against more
sophisticated image modifications.

IV. CONCLUSION

The research paper presents a novel concept of identifying
and detecting Al-generated images. The findings suggest that
despite extensive manipulations, the semantic meaning of
images remains similar to their original counterparts, allowing
for identification. However, the efficacy of this approach is
inherently limited by the dataset used for embedding genera-
tion. Also, the widespread adoption of this system across big
technology companies such as OpenAl, Meta, and Google is
crucial to ensuring its success. Standardization and a shared
database of vector embeddings are necessary because different
embedding models produce varying representations. Future
work will focus on leveraging blockchain and IPFS to estab-
lish a decentralized image verification system. By ensuring
the integrity and accessibility of vector embeddings, such
a system could pave the way for a more robust and uni-
versally accepted Al image detection framework. Ultimately,
collaboration across the industry will be vital in creating a
scalable, transparent, and effective solution for combating the
challenges posed by Al-generated media.
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