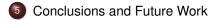
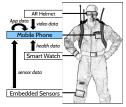
R-Drive: Resilient Data Storage and Sharing for Mobile Edge Clouds

Mohammad Sagor Radu Stoleru Amran Haroon Suman Bhunia Mengyuan Chao Ala Altaweel Maxwell Maurice[†] Roger Blalock[†]

Texas A&M University, Computer Science and Engineering, College Station, TX [†]National Institute of Science and Technology (NIST), Boulder, CO


The 19th IEEE International Conference on Mobile AdHoc and Smart Systems (MASS), 2022

Outline



- 8 R-Drive Design and Implementation
- A R-Drive Performance Evaluation

Mobile Edge Clouds for Next Generation Disaster Response

(a) Next-Gen First Responders

(C) Rescue Team B

Mobile Edge Clouds for Next Generation Disaster Response

(a) Next-Gen First Responders

(b) Rescue Team A

(C) Rescue Team B

Mobile Edge Cloud Advantages:

- Existing applications work in the absence of network and cloud infrastructures
- Energy savings stemming from local processing when compared with cloud processing
- Lower application latencies when compared with the cloud

Conclusions and Future Work

An Architecture for Mobile Edge Clouds (MEC)

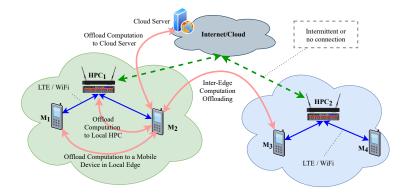


Figure: MEC (M1, ..., M4, HPC1, HPC2) offload computation intra-edge, inter-edge and to the cloud

Conclusions and Future Work

The Needs, Research Challenges and Contributions

Disaster response/tactical applications generate gigabytes of mission-critical and personal data that needs to be readily available for seamless processing.

The Needs, Research Challenges and Contributions

Disaster response/tactical applications generate gigabytes of mission-critical and personal data that needs to be readily available for seamless processing.

Research Questions

- How to ensure reliability of data stored?
- How to efficiently use MEC storage space and communication?
- How to ensure privacy and integrity protection of data stored?
- How to leverage existing MEC infrastructures?

The Needs, Research Challenges and Contributions

Disaster response/tactical applications generate gigabytes of mission-critical and personal data that needs to be readily available for seamless processing.

Research Questions

- How to ensure reliability of data stored?
- How to efficiently use MEC storage space and communication?
- How to ensure privacy and integrity protection of data stored?
- How to leverage existing MEC infrastructures?

Proposed Solution

- R-Drive, a resilient data store, implemented and evaluated in a real system
- An Adaptive Erasure Coding mechanism, suitable for dynamic MEC
- A seamless data sharing solution for existing cloud-based applications

CODA [TOCS'92]

State of Art

• Not resilient; store and forward mechanism during disconnection

CODA [TOCS'92]

State of Art

• Not resilient; store and forward mechanism during disconnection

Distributed Storage for Cloud

- GFS [SOSP'03], HDFS [MSST'10]
- Heavyweight, designed for cloud

CODA [TOCS'92]

State of Art

Not resilient; store and forward mechanism during disconnection

Distributed Storage for Cloud

- GFS [SOSP'03], HDFS [MSST'10]
- Heavyweight, designed for cloud

Distributed Storage for Android

- Hyrax [CMU'09]
- Still heavyweight, due to simple code porting, low performance

CODA [TOCS'92]

State of Art

Not resilient; store and forward mechanism during disconnection

Distributed Storage for Cloud

- GFS [SOSP'03], HDFS [MSST'10]
- Heavyweight, designed for cloud

Distributed Storage for Android

- Hyrax [CMU'09]
- Still heavyweight, due to simple code porting, low performance

Mobile Edge Storage

- MEFS [WoWMoM'19], FogFS [CCNC'19]
- Not designed for dynamic networks, assumes infrastructure networks are present

State of Art

Erasure Coding for Reliability with Reduced Storage Cost

- MDFS [TCC'15], HACFS [FAST'15], OctopusFS [SIGMOD'17]
- No procedure mentioned to select Erasure Coding parameters

Erasure Coding for Reliability with Reduced Storage Cost

- MDFS [TCC'15], HACFS [FAST'15], OctopusFS [SIGMOD'17]
- No procedure mentioned to select Erasure Coding parameters

Data Sharing at MEC

State of Art

- Griffin [HotEdge'20], Li et al. [IEEE-IoT'18], Zhang et al. [INFOCOM'21]
- Cannot share data in the absence of infrastructure networks

Erasure Coding for Reliability with Reduced Storage Cost

- MDFS [TCC'15], HACFS [FAST'15], OctopusFS [SIGMOD'17]
- No procedure mentioned to select Erasure Coding parameters

Data Sharing at MEC

State of Art

- Griffin [HotEdge'20], Li et al. [IEEE-IoT'18], Zhang et al. [INFOCOM'21]
- Cannot share data in the absence of infrastructure networks

Commercial Solutions

- Dropbox, OneDrive, Google Drive
- Require cloud for reliable storage and sharing

Erasure Coding for Reliability with Reduced Storage Cost

- MDFS [TCC'15], HACFS [FAST'15], OctopusFS [SIGMOD'17]
- No procedure mentioned to select Erasure Coding parameters

Data Sharing at MEC

State of Art

- Griffin [HotEdge'20], Li et al. [IEEE-IoT'18], Zhang et al. [INFOCOM'21]
- Cannot share data in the absence of infrastructure networks

Commercial Solutions

- Dropbox, OneDrive, Google Drive
- Require cloud for reliable storage and sharing

How to answer the aforementioned research questions?

R-Drive Performance Evaluation

Conclusions and Future Work

Mobile Edge Clouds with DistressNet-NG

Carry-on mobile devices

R-Drive Performance Evaluation

Conclusions and Future Work

Mobile Edge Clouds with DistressNet-NG

Carry-on mobile devices

er lination)	Survey123	DropBox		Facial/Emotion Recognition	Application
lgeKeep Edge Coore	R-Driv (Resilient Storage			R-MStorm lient Mobile Storm)	Data Processing & Storage
Ed (Resilient	RSock (Resilient Soc			TCP/UDP	Transport

Figure: DistressNet-NG Hardware and Software Architecture for Mobile Edge Clouds

R-Drive Performance Evaluation

Conclusions and Future Work

Mobile Edge Clouds with DistressNet-NG

Carry-on mobile devices

er lination)	Survey123	R-Drive		Facial/Emotion Recognition	Application
lgeKeep Edge Coore				R-MStorm lient Mobile Storm)	Data Processing & Storage
Ed (Resilient	RSock (Resilient Soc			TCP/UDP	Transport

Figure: DistressNet-NG Hardware and Software Architecture for Mobile Edge Clouds

RSock: Elsevier'22, R-MStorm: SEC'20, EdgeKeeper: MASS'22

R-Drive: Resilient Data Storage and Sharing for Mobile Edge Clouds

R-Drive Performance Evaluation

R-Drive Architecture

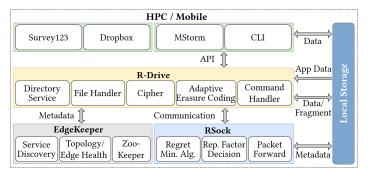


Figure: R-Drive architecture and its integration with DistressNet-NG

R-Drive Performance Evaluation

R-Drive Architecture

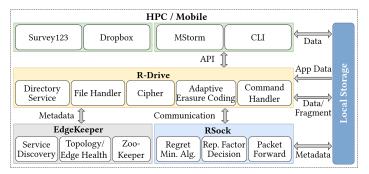
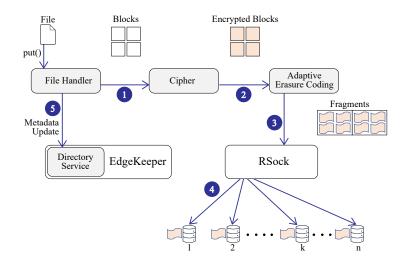
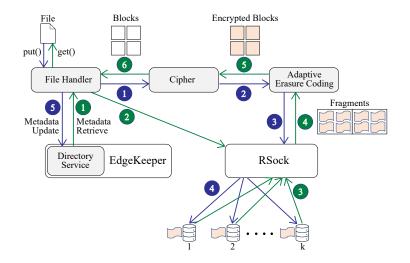
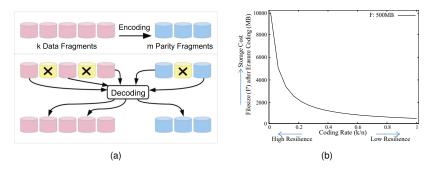



Figure: R-Drive architecture and its integration with DistressNet-NG


Components we focus here:

- File Handler
- Adaptive Erasure Coding

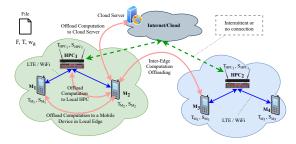
File Handler - File Creation



File Handler - File Creation & Retrieval

R-Drive Performance Evaluation

Adaptive Code Rate Selection


Erasure Coding - Reed Solomon *

- Need any k out of n fragments (n = k + m). The ratio k/n is called Code Rate.
- Reducing the Code Rate increases Resilience, at the price of storage.

J. S. Plank, "Erasure codes for storage systems: A brief primer," USENIX Mag., vol. 38, no. 6, pp. 44-50, 2013

R-Drive Performance Evaluation

Adaptive Code Rate Selection

Challenge

How to chose k and n for a particular system? Which n devices?

Solution

We need an online algorithm that takes edge parameters as inputs and decides best k and n, and the fittest n devices.

Adaptive Code Rate Selection

Availability

A device's battery remaining time impacts Availability.

Device availability:

$$p_i = egin{cases} 1, & T_i \geq T \ T_i/T, & 0 < T_i < T \end{cases}$$

System availability:

$$A(k, n, p) = C_k^n p^k (1-p)^{(n-k)} + ... + C_n^n p^n$$

where:

- $p_i = i^{th}$ device Availability
- $T_i = i^{th}$ device battery remaining Time
- T = user's desired file availability Time
- A = system availability, when $p_i = p_j, \forall i, j, i \neq j$

R-Drive Performance Evaluation

Conclusions and Future Work

Adaptive Code Rate Selection

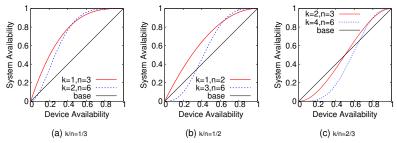
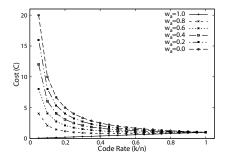


Figure: System availability as a function of device availability and Code Rate. "base"represents pure local storage.

Similar Coding Rates may not provide similar System Availability due to variable Device Availability

Adaptive Code Rate Selection

Objective: Minimize Storage Cost while ensuring Availability

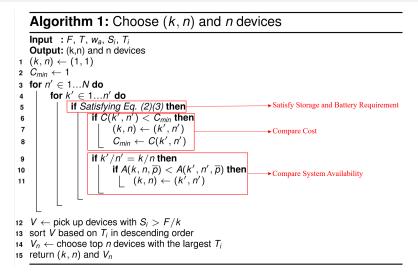

$$\begin{array}{ll} \underset{(k,n)}{\text{minimize}} & C(k,n,w_a) = \overbrace{w_a * k/n} + \overbrace{(1-w_a) * n/k} & (1) \\ & \downarrow & \downarrow & \downarrow & (2) \\ & f \leq S_n, & \underset{\text{cost for high reliability}}{} & f \leq S_n, & \underset{\text{cost for high reliability}}{} & (2) \\ & f \leq T_k, & \underset{\text{storage cost for high reliability}}{} & (3) \\ & 1/N \leq k \leq n \leq N, k, n \in Z^+ & (4) \\ & 0 < w_a < 1 & (5) \end{array}$$

 $C = \text{Cost function for 3-tuple } (k, n, w_a)$ $S_n = n^{th}$ maximum available storage among N devices

 $w_a = \text{User's importance for data reliability}$ T = User expected File availability time

 F = Initial file size $T_k = k^{th}$ longest remaining time among N devices

Cost vs. Code Rate


$$rac{\partial C}{\partial (k/n)} = 0 \Rightarrow CR = \sqrt{rac{1-w_a}{w_a}}$$

Wa	Code rate	Optimal Cost
1.0	0.05	0.05
0.9	0.35	0.6007
0.8	0.50	0.8
0.7	0.65	0.9165
0.6	0.8	0.98
0.5	1.0	1.0

Table: Minimum Cost (C) for w_a and the corresponding Code Rates (k/n)

For every w_a , there is a Code Rate for which the cost is the lowest

Adaptive Code Rate Selection Algorithm

System Implementation and Performance Evaluation

341#0#8 E	300 0 # # 0 0 1 4 60 a	74 28 8 8 6 6 8 9 4 9 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	411 #0 #0 473 0A4
, Ø 20065.jpg	12 20040.jpg	A	C 2004a.jpg
C SOOKLING C Zenhjar	C Sett.jpg	C monor	C 500kh.jpg
C cos_mbat C Settipg	🖿 carrero	> Aller	E foo
The fee	Survey123		 Survey123 ber
in test			teaml
• 100 O		•	- feed

Figure: DistressNet-NG HPC nodes and the R-Drive app

Conclusions and Future Work

System Implementation and Performance Evaluation

341#9#8 E	300 0 # # 0 0 1 4 60 a	74 28 8 8 6 6 8 9 4 9 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	411 #0 #0 473 0A4
, Ø 20065.jpg	12 20040.jpg	A	C 2004a.jpg
C SOOKLING C Zenhjar	C Sett.jpg	C monor	C 500kh.jpg
C cos_mbat C Settipg	🖿 carrero	> Aller	E foo
The fee	Survey123		 Survey123 ber
in test			teaml
• 100 O		•	- feed

Figure: DistressNet-NG HPC nodes and the R-Drive app

Metrics for evaluation

- Storage Cost
- Read throughput (as a function of k/n and link availability)
- Write throughput (as a function of k/n and link availability)
- R-Drive Overhead (processing, energy, execution time)
- No work on code rate adaptation for comparison

Conclusions and Future Work

Rate Selection : Achieved Cost

Wa	Lower	Achieved Cost			
	Bound	NS=30	NS=20	NS=10	
1.0	0.05	0.2402	0.3613	0.66	
0.9	0.6	0.6	0.6048	0.6782	
0.8	0.8	0.8	0.8121	0.8360	
0.7	0.9165	0.9165	0.9166	0.9183	
0.6	0.9797	0.9797	0.9799	0.9807	
0.5	1.0	1.0	1.0	1.0	

Table: Achieved cost for different w_a and Network Sizes (NS)

For larger network size, achieved cost is closer to the optimal cost

Conclusions and Future Work

Rate Selection : CR Decision

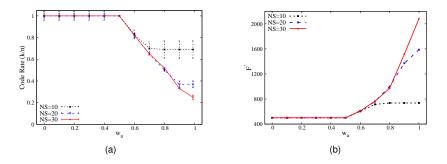


Figure: Impact of w_a on: a) code Rate (k/n); and b) file size F', for network sizes, NS=10, 20 and 30

R-Drive Performance Evaluation

Conclusions and Future Work

Data Write Throughput

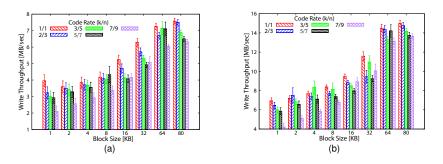


Figure: Data write throughput, for 0.5 link availability (a) and 1.0 link availability (b)

R-Drive Performance Evaluation

Conclusions and Future Work

Data Read Throughput

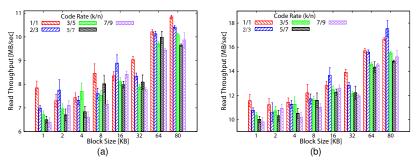


Figure: Data read throughput, for 0.5 link availability (a) and 1.0 link availability (b)

R-Drive Overhead

Energy consumption for different Android devices

Device	Runtime	Consumed			Dist-NG
	h:min	%	mAh	Wh	Wh
Samsung S8	3:30	12.5	377.4	1.5	3.5
Google Pixel	3:05	11.9	323.5	1.2	3.2
Essential PH1	3:15	12.6	381.8	1.5	3.8

R-Drive Overhead

Energy consumption for different Android devices

Device	Runtime	Consumed			Dist-NG
	h:min	%	mAh	Wh	Wh
Samsung S8	3:30	12.5	377.4	1.5	3.5
Google Pixel	3:05	11.9	323.5	1.2	3.2
Essential PH1	3:15	12.6	381.8	1.5	3.8

Processing overhead as percentage of total delay

	Shamir	AES	Reed-Solomon
Read	5%	87%	8%
Write	3%	84%	13%

R-Drive Overhead

Energy consumption for different Android devices

Device	Runtime	Consumed			Dist-NG
	h:min	%	mAh	Wh	Wh
Samsung S8	3:30	12.5	377.4	1.5	3.5
Google Pixel	3:05	11.9	323.5	1.2	3.2
Essential PH1	3:15	12.6	381.8	1.5	3.8

Processing overhead as percentage of total delay

	Shamir	AES	Reed-Solomon
Read	5%	87%	8%
Write	3%	84%	13%

Adaptive Rate Selection Algorithm Execution Time (in msec)

Device	NS=30	NS=20	NS=10
Samsung S8	101.6	15.3	0.541

Conclusions

- MEC require careful design of their architectural components, for seamless, optimized operation.
 - R-Drive integrated with DistressNet-NG
- MEC benefit from Adaptive Code Rate selection.
 - R-Drive employs Adaptive Code Rate selection.

Future Work

- Recovery of lost file fragments, to continue guarantee k/n
- Moving fragments from one device to another before device failure
- Extend R-Drive API to allow per-block operations

R-Drive Performance Evaluation

Conclusions and Future Work

Acknowledgements and Code Releases

Cooperative Agreement #70NANB17H190: "DistressNet-NG: Resilient Mobile Broadband Communication and Edge Computing for FirstNet"

- R-Drive: https://github.com/LENSS/R-Drive
- EdgeKeeper: https://github.com/LENSS/EdgeKeeper
- **RSock**: https://github.com/LENSS/RSock
- MStorm: https://github.com/LENSS/EdgeStorm
- EmuEdge: https://github.com/LENSS/EmuEdge