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Abstract—This paper describes our work in creating a video
game to analyze the human dynamics of a Hide&Seek game.
By harnessing human computation, we use this approach to get
insights into how humans in a game Hide&Seek help understand
how this relates to other problems, such as how Hardware
Trojans might be hidden in an Integrated Chip. Hide&Seek,
as delineated by Chapman et. al. [1], can be directly related to
cybersecurity, and Sarihi et. al. [2] further describe Hardware
Trojans in the perspective of The Seeker’s Dilemma (an extension
of Hide&Seek on a graph). Within the cybersecurity context,
Hide&Seek is analogous to a continuous game of cat-and-mouse:
the red player (the cat) assumes the role of the seeker, while
the blue player (the mouse) acts as the hider. This study aims
to model these games with human players and mathematical
representations of Hide&Seek on a graph to collect data to better
understand the hiding and seeking problems for a given graph.
We describe the video game and provide results for a small
sample of players hiding and seeking on three levels/graphs.

Index Terms—Hardware Trojan, Human Computation,
Hide&Seek

I. INTRODUCTION

This work explores the dynamics of a unique Hide&Seek
video game as a human-based simulation for cybersecurity
practices, as defined by Chapman et al. [1]. Hide&Seek, within
the context of cybersecurity, can be seen as an ongoing game
of cat-and-mouse. The red player, the cat, takes the role of
the seeker, while the blue player, the mouse, is the hider. This
project aims to emulate a game theory model, ”The Seeker’s
Dilemma,” a mathematical representation of Hide&Seek on a
graph [2] [3]. This problem, as related to adding Hardware
Trojans (HTs) to Integrated Chips, is challenging. We seek to
use our video game to analyze human approaches within this
space to understand better how an intelligent agent might hide
or seek.

In our model, a seeker is constrained by limited time
resources, introducing a significant challenge in the game.
The interplay of exploration versus exploitation is central to
the game’s strategy, requiring the seeker or hider to decide
whether to exploit known information or explore for new
information and potentially better alternatives. An essential
question is whether the optimal strategy for the hider is to
remain in a fixed location, and if they do explore, where
would they go? Similarly, on the other side of the game, the
hider chooses where to hide, and does this provide insight
into where we might expect HTs to be hidden? To test this
approach, we developed a two-player online Hide&Seek video

game. Throughout gameplay, the system continuously records
the positions of both players. This data generates a heatmap,
visually representing the locations and durations of the hider
and seeker at each spot. Analyzing these heatmaps can reveal
insights into players’ strategic behaviors when assuming the
roles of seeker or hider.

We show the results of a small population of players who
have played our game’s three levels (each level is a graph).
In this way, we are harnessing human computation [4] [5] to
analyze behavior such that we can use the players’ behavior
to understand how we might create agents to solve the HT
detection problem algorithmically.

The contributions of this paper are as follows:
• Development of a novel Hide&Seek video game to em-

ulate cybersecurity scenarios.
• Implement a two-player online game to collect player

positions and strategies data.
• Generation of heatmaps to visualize and analyze the

behavior of seekers and hiders.
• Insights into the strategic decision-making processes in-

volved in exploration versus exploitation within the game.
The rest of this paper is organized as follows: Section II

reviews related work on game theory applications in cyber-
security and human-based simulations. Section III details the
design and implementation of the Hide&Seek game, including
the rules and mechanics, and data collection methods. Section
IV presents the analysis of the gameplay data, including the
generation of heatmaps and the insights gained regarding
player strategies. Finally, Section VI concludes the paper and
suggests potential directions for future research.

II. BACKGROUND AND RELATED WORK

The creation of our Hide&Seek video game to understand
human hiding and seeking behavior and its relation to Hard-
ware Trojans (HTs) is an important link between what we
call harnessing human computation and game theory in HT
detection and insertion. We cover both of these ideas briefly
in this section.

A. Harnessing Human Computation with Games

Harnessing Human Computation [4] and other types of
productive play fall under the greater domain of games with
a purpose (GWAP) (defined by von Ahn) and the general and
contested term serious games. The first of these games was



the ESP Game [6], created by Luis von Ahn. Von Ahn and
his colleagues and students have research articles on GWAPs
[7], [8], [9], [10], [11]. There is a huge variety of Human
Computation Games (HCGs), with popular examples being
games such as Foldit, which has had tremendous success [12].

Focusing on the types of computational problems and
algorithms in the graph-based meta-heuristic problems, this
work focuses on games based on research such as Viglietta
et. al. [13] [14] have looked at classic video games and
have shown how complex these algorithms are in terms of
complexity theory. Regardless of the problem’s complexity
classification, we confidently hypothesize that meta-heuristic
algorithms (as surveyed and classified by Blum et. al. [15])
are an excellent interface point to think of as good game
isomorphs that humans can work with computers to solve real-
world problems. The links between graphs, metaheuristics, and
games include a survey by Siu et. al. [16]. We have done
previous explorations in this space with landscape generation
[17] and the FPGA placement problem [18]. As is the focus
of harnessing insight here, this is more related to the recent
thesis by Gundry [19], which focuses on games to collect data.

B. Game Theory link for HT Detection

The Seeker’s Dilemma [2] was established by linking di-
rectly to Chapman et. al. [1] definition of cybersecurity and
Hide&Seek. HTs are unwanted modifications in the design
or manufacturing of an Integrated Chip (IC) such that the
IC’s expected behavior is altered. Such modifications follow
malicious goals such as denial-of-service or information steal-
ing [20].

Kamhoua et. al. [21] pioneered the study of the HT dilemma
as a zero-sum game between an attacker and a defender,
aiming to find the optimal test batch that reveals HTs in the
presence of an intelligent attacker using the Nash Equilibrium
(NE). Their study claims robustness against irrational attacker
scenarios as well.

Saad et. al. [22] incorporated uncertainty and risk in
decision-making for both the attacker’s and defender’s behav-
iors by applying principles from prospect theory (PT) [23].
Das et. al. [24] also employed PT, but with a modification in
the game, where the defender learns the attacker’s strategies in
the ”learning stage” and utilizes this knowledge in the “actual
game”, enabling the attacker to “play dumb” and deceive the
defender in the learning phase.

Brahma et. al. [25] investigated HT testing with a bud-
get constraint on the testing process, considering single and
multiple HT types. Nan et. al. [26] built upon this work
by introducing human errors and biases in the insertion and
detection processes. Gohil et. al. [27] examined attack and
defense strategies in a split-manufacturing environment.

Regarding the Seeker’s Dilemma [2] [3] as an HT detection
game, our video game (as described below) focuses on creating
planar graphs with a Hide&Seek gaming environment. The
goal is to understand hiding and seeking human tendencies on
a graph, and both the dynamic aspect is not present in actual

HT detection, and the video game is a strict presentation of
Hide&Seek where k == 1. We discuss these weaknesses later.

III. THE HIDE&SEEK GAME AND RELATED SYSTEM

Fig. 1: Start screen of the game with the Valleys graph
displayed in the center.

We created a video game where we can translate graphs
(related to digital circuits) into maps on which a hider and
seeker can play Hide&Seek. Figure 1 shows the screen before
the game starts where the hider and seeker will see the graph
(converted into a 3D map) on which they will play the game.
In this section, we describe the game, some technical aspects
of the game system, and the data collection capabilities built
into the system.

A. Gameplay Framework

Our game is designed using the Unreal Engine. The game is
run on a server, and players connect as clients. The gameplay
framework in Unreal Engine is akin to classes in C++,
where various class aspects facilitate shared information and
communication between the server and client. Understanding
how each class operates in a multiplayer setting is crucial
due to replication challenges as gameplay scales. Adding
new features increases complexity, and these classes help in
maintaining modularity.

In Unreal Engine, the game mode defines the rules govern-
ing the game. These rules encompass player joining mech-
anisms, character selection, and game logic. This class is
replicated only on the server, ensuring clients cannot alter the
game rules unexpectedly. It dictates game operation and sets
timers stored in the game state. Upon meeting certain condi-
tions, it executes client replication events such as enabling and
disabling movement and power-ups. This class also allows for
game and variable resets.

The game state monitors the current game mode and the
players’ connections. This class is replicated for all clients,
making functions and variables accessible to all users. It
controls player spawn points, role selection, and movement
definitions per the game’s rules. Time-related variables are also
defined here to ensure proper client updates.

The player state is vital for obtaining specific player infor-
mation and their roles. This class is replicated for both servers



and clients. It produces player coordinate arrays that generate
hider and seeker heatmaps (which we will describe below).

B. Creation of Heatmaps as Data

Fig. 2: Example 2D Heatmap of the seeker

Player coordinates are recorded in hider and seeker arrays
stored in the player state on the clients at a rate of ten recorded
positions per second. For simplicity, the z-axis (of the 3D
game) is not recorded. The data is saved as comma-separated
values (CSV), ensuring manageable file sizes and ease of post-
data analysis. Python scripts provide graphing capabilities to
create a visual heatmap representation from these coordinates.
The Python script renders player movement within a game by
generating a heatmap that visualizes player presence frequency
and duration in various map areas. This heatmap aids in the
following:

• Identifying strategic locations within the game.
• Balancing the game by modifying overused or underused

areas.
• Enhancing player experience by understanding player

behavior and preferences.
Figure 2 shows a seeker player’s heatmap using a ’YlGnBu’
colormap. Yellow represents the low density of the player
position, green represents the medium density of the player
position, and blue represents the high density.

To improve accessibility, the final heatmap was enhanced to
a three-dimensional version, allowing intensity visualization
by colors and elevation (Figure 3). This heatmap provides
a more visually appealing and informative representation of
seeker player positions in the Valleys map, where the z-
axis allows for easy visualization of the player’s high-density
positions.

C. The Basics of our Game
In our final video game, we created three graphs Valleys,

Garland, and GPIO as levels a hider and seeker can play on.

Fig. 3: An example 3D Heatmap of the seeker player in the
Valleys map

Fig. 4: GPIO circuit diagram from [28]

Valleys were the initial level that we developed our game with,
and it is shown with colored nodes in Figure 5. The checkmark
in node 1 shows the seeker’s location to start the game. Level
2 is based on Miami’s Garland Hall floor plan with faculty
offices and classrooms. It is shown in Figure 8. Finally, to
illustrate how a circuit can be implemented as a graph, we
take the circuit diagram of the Atmega 328P microcontrollers
GPIO circuitry (shown in Figure 4 and convert that circuit into
the graph in Figure 11. The coloring of the nodes in each of
these graphs will be used in our bar charts to make analysis
easier.

Once a level has been selected and both the hider and seeker
are connected to the server, a hide&seek game begins. Initially,
the hider is given a few seconds to travel the 3D map, and then
a countdown timer is started for the seeker to search for the
hider. The game ends when the seeker enters the same node as



the hider or when the countdown timer reaches zero. During
gameplay, both player locations are recorded.

IV. RESULTS AND ANALYSIS

After data collection from a small player population of 10
pairs of seekers and hiders, in this section, we provide our
aggregate data results and a basic analysis of player behavior.
One aspect of our game, which is not as related to the
HT detection problem, is that players’ behavior adjusts with
knowledge of other players’ tendencies, leading to dynamic
and strategic gameplay. Each player freely traverses the virtual
environment, navigating the nodes and edges of the graph
representation of the game map. The traversal process poses
challenges for analysis, as players can reroute themselves
while on an edge and potentially reverse their direction to a
previous node. Despite these complexities, discernible patterns
and strategies emerge, revealing the dynamic nature of the
game’s graphical representation.

For each level, we will briefly describe the level (with an
associated graph), and then provide aggregate data for the
hiders and seekers as bar graphs. For example, Figure 6 shows
the aggregated data of the hiders on the level of the valleys.
The x-axis shows each node (numbered and colored), and
the y-axis shows the percentage of time (aggregated over all
games) the hiders spent at that node.

A. Graph of Valleys

The Valleys graph is an abstract planar graph created with
15 distinct nodes, each featuring unique attributes (e.g., a
mansion with two floors at node nine and a hideable bush
at node fifteen). These features influence player position data,
as players may take longer to traverse specific nodes.

Figure 5 depicts the Valleys map. Figure 6 shows the steady-
state distribution for hiders, indicating a prevalent strategy
of remaining near the initial nodes and frequently returning
to the starting node. Node 9, with the most assets, is a
popular hiding spot. Low-value nodes are typically transitioned
through quickly.

Figure 7 shows the steady-state distribution for seekers
who inspect each node. Time spent at each node scales with
the number of remaining assets to be checked, with node 9
requiring more thorough searches.

B. Graph of Garland Hall

Garland Hall, representing a building at Miami University,
features a non-planar graph with intersecting edges that in-
clude more nodes and longer edges than the other two maps.

Figure 8 shows the Garland Hall map. Figure 9 indicates
that hiders often remain stationary at nodes furthest from the
hider’s starting location, contrasting with the Valleys strategy.
For this level, we might hypothesize that the complexity of the
graph and the lack of loops suggests that a hider can hide in
complexity and hopefully wait for the seeker. Node 4, however,
has the highest occupancy rate and is relatively close to the
seeker’s starting location. This shows that hiders have taken
various strategies, sometimes hiding in the depths and trying to

Fig. 5: Graph of the Valleys map.

Fig. 6: Steady-state distribution of nodes for hider on Valleys.

Fig. 7: Steady-state distribution of nodes for seeker on Valleys.



Fig. 8: Graph of Garland Hall at Miami University.

Fig. 9: Steady-state distribution of nodes for hider on Garland.

Fig. 10: Steady-state distribution of nodes for seeker on
Garland.

circle the seeker. The hider tends to hide in either the circular
points or far away isolated nodes.

Figure 10 shows the more evenly spread seeker distribution,
emphasizing nodes furthest from the start. Time spent at nodes
scales with node size, from small offices to larger classrooms.
As shown in each result, the seeker must emphasize an
exploration phase in almost all its approaches. This results
in a much broader distribution of visits.

C. Graph of a GPIO Circuit Diagram

The GPIO circuit graph resembles a tree structure with
three branches, representing a GPIO circuit from an 8-bit AVR
microcontroller [28]. This map’s analysis can indicate potential
hotspots for HTs as this is a realistic circuit. However, this
circuit is still relatively simple compared to realistic circuits
in which HTs might be hidden.

Fig. 11: Graph of a GPIO circuit from an 8-bit AVR micro-
controller.

Figure 11 shows the GPIO map. Figure 12 reveals that
hiders select a single branch and occupy the furthest node, with
nodes 8, 15, and 22 showing the highest occupancy. Returning
to the starting node is also a strategy we identified in the
previous level that is common to the dynamic nature of our
video game.

Figure 13 depicts the seeker distribution, where the tri-
branch structure gives seekers a 33% initial chance of locating
a hider. Backtracking consumes time, increasing the likelihood
of finding the hider in subsequent branches.

V. DISCUSSION

Our analysis provides insights into player strategies and
behaviors, which are applicable in fields like cybersecurity



Fig. 12: Steady-state distribution of nodes for hider on GPIO.

Fig. 13: Steady-state distribution of nodes for seeker on GPIO.

to understand potential threat actor locations. Our approach
of using graph theory to map physical architectures, such as
GPIO circuits, can be extended to other hardware circuits,
noting that the balance between graph size and interesting
gameplay becomes more challenging as the graph grows.

This work provides some ideas for understanding where
HTs might be hidden in a circuit but does not fully connect
the two problems. The disconnect between the video game and
the real HT detection problem is that the game has a dynamic
hider, while the HT is a static hider. However, we could still
use this approach to get insights, as described below.

First, levels in this game could be snapshots of a larger
circuit. This would allow larger circuits to be partitioned so
that each level would give us insight into pieces of the overall
circuit. Second, capturing moments of hiding and recording
the aggregate of the seekers’ detections when the hider is at a
specific node might provide insight into the static HT problem.

VI. CONCLUSION

In this work, we created a video game that allows humans
to play Hide&Seek. Our game system is designed to record
positional data of the hider and seeker so that we can analyze
their strategic behavior. We showed aggregate results of three
levels of this game to illustrate how the data can be used to

understand the hiders and seekers’ behavior, which then can
be used to understand the nature of HT being hidden. Our
results show that this type of system can create and describe
how the data collection techniques might provide insight into
designing agent heuristics for real-world Hide&Seek problems
like HT detection.
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