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Abstract—Credit card fraud continues to impose substantial
financial losses on consumers and institutions, motivating the
development of intelligent detection systems that are both accu-
rate and privacy preserving. While machine learning–based fraud
detection has shown strong performance in centralized settings,
regulatory constraints, data sensitivity, and institutional data silos
limit the feasibility of centralized model training in real-world
financial environments. Federated learning (FL) addresses these
challenges by enabling collaborative model training across multi-
ple clients without exchanging raw transaction data. However, the
practical deployment of FL for financial fraud detection remains
hindered by security vulnerabilities, susceptibility to poisoning
attacks, and a lack of guidance on end-to-end, cloud-deployable
system design. This paper presents an end-to-end secure fed-
erated learning framework for cross-client credit card fraud
detection that integrates multiple complementary security mech-
anisms within a real time, cloud-based pipeline. The proposed
approach combines homomorphic encryption to protect client
model updates, hash-based integrity verification to ensure update
authenticity, and Fool’s Gold based trust scoring to detect and
suppress anomalous or adversarial client contributions during
aggregation. The framework is implemented and evaluated as a
proof of concept within an Amazon Web Services (AWS) sandbox
environment, demonstrating how secure federated training can
be operationalized using widely available cloud infrastructure.
Experimental results using open-source credit card transaction
datasets show that the proposed system achieves competitive
fraud detection performance while significantly enhancing re-
silience against data poisoning and inference threats. By unifying
privacy preservation, robustness, and deployability in a single
architecture, this work provides practical design guidance for
secure federated learning in financial applications. It highlights
a viable path toward real world adoption of collaborative, privacy
aware fraud detection systems.

Index Terms—Federated learning, privacy-preserving, finan-
cial security, differential privacy, cloud computing.

I. INTRODUCTION

Credit card fraud remains a significant threat to the financial
sector, contributing to substantial economic losses each year.
Recent data from the Federal Trade Commission indicate that
consumers lost more than $12.5 billion to fraud in 2024,
reflecting a 25% increase over the previous year [1]. As
fraud tactics continue to evolve, financial institutions require
advanced Artificial Intelligence (AI) and machine learning
(ML) systems capable of adapting to emerging malicious
behaviors in real time [2].

Traditional centralized ML approaches for fraud detection
rely on aggregating sensitive data into a single repository,
raising concerns related to privacy, regulatory compliance, and
security. Federated learning (FL) offers a promising alternative
by enabling institutions to collaboratively train a shared model
without exchanging raw data. This distributed paradigm en-
hances privacy preservation while leveraging diverse datasets
that would otherwise remain siloed. However, deploying FL
in financial environments introduces challenges such as infras-
tructure limitations, exposure to model poisoning attacks, and
the need for secure global model hosting.

This study investigates how federated learning (FL) can
be applied to improve credit card fraud detection while
addressing the security and operational challenges of real-
world deployment. Across the literature, three recurring needs
emerge, including scalable and accurate fraud detection, strong
privacy and security guarantees, and real-time deployability in
cloud environments [3]. While FL has demonstrated promise
in improving accuracy and preserving privacy, existing work
provides limited guidance on end-to-end secure FL pipelines,
ensuring model transparency, or deploying resource-efficient,
real-time fraud detection systems. To address these gaps,
this study uniquely integrates homomorphic encryption [4],
hash-based integrity verification [5], and Fool’s Gold–based
defenses [6] into a real-time, cross-client federated learn-
ing framework for credit card fraud detection. By combin-
ing multiple-layered security measures in a cloud-deployable
pipeline within an Amazon Web Services (AWS) sandbox
environment [7], the proposed approach mitigates data poison-
ing and inference attacks while enabling practical operational
deployment. Drawing on existing literature, this work presents
a proof-of-concept framework demonstrating how secure fed-
erated models can be effectively implemented using cloud
technologies. This paper makes the following key contribu-
tions

• Design and implementation of a secure federated learning
framework for real-time credit card fraud detection that
enables cross-client collaboration without sharing raw
transactional data.

• Integration of layered security mechanisms, including ho-



momorphic encryption, data integrity hashing, and Fool’s
Gold–based anomaly detection, to mitigate poisoning and
inference attacks in federated training.

• Experimental evaluation using open-source public
datasets in a cloud-based sandbox environment to
demonstrate the operational feasibility and robustness of
the proposed framework.

The remainder of this paper is organized as follows. Section
II reviews related work, including existing applications of
federated learning, identified limitations, and security mecha-
nisms for enhancing model robustness. Section III details the
system architecture and implementation. Section IV presents
and analyzes the experimental results. Finally, Section V
concludes the paper and outlines for future research directions.

II. LITERATURE REVIEW

Existing research on credit card fraud detection demon-
strates growing interest in advanced ML and privacy-
preserving methods as fraud becomes more prevalent in in-
creasingly cashless economies. Traditional approaches often
apply data mining, fuzzy logic, and rule-based systems. For
example, Chaudhary et al. [8] used genetic algorithms to refine
rule-based detection, achieving high accuracy but offering a
limited discussion of security vulnerabilities, highlighting a
critical gap in the robustness of conventional systems.

Several studies identify persistent challenges in fraud detec-
tion. Kulatilleke [9] emphasizes issues such as class imbalance,
limited availability of high-quality financial datasets, and the
lack of cross-organizational data sharing due to privacy con-
straints. FL is frequently proposed as a solution because it
enables collaborative training without sharing raw data, ad-
dressing the data-silo and privacy issues. However, additional
work is needed to support secure real-world deployment.

Deep learning techniques have also been explored. Alarfaj
et al. [10] evaluated convolutional neural networks (CNNs)
and long short-term memory (LSTM) networks, demonstrating
improved performance over classical ML models but not
addressing how such models can be securely scaled. Mariam
[11] further highlights the importance of high-quality data and
feature engineering, showing significant impacts on detection
accuracy and false-positive rates.

Several surveys compare centralized and federated ap-
proaches. Abdulrahman et al. [12] show that centralized learn-
ing poses privacy risks and discourages collaboration, whereas
FL improves privacy but may be vulnerable to anomalous
client updates. Riviera et al. [13] analyze horizontal and
vertical FL, noting that horizontal FL often trains faster,
while vertical FL may be more suitable for financial data
distributions.

Security remains a major concern. Sun et al. [14] outline
poisoning attacks targeting both local datasets and global
aggregation processes, underscoring the need for robust de-
fenses. Nandakumar et al. [15] propose fully homomorphic
encryption for secure computation, though it introduces sig-
nificant computational overhead. Fereidooni et al. [16] discuss

vulnerability to inference attacks and propose SafeLearn, a
more communication-efficient secure aggregation protocol.

Further research validates the benefits of FL for fraud detec-
tion. Yang et al. [17] show that FL improves performance by
roughly 10% over centralized models, and Bin Sulaiman et al.
[18] demonstrate that hybrid neural network–FL architectures
can improve accuracy while preserving privacy. Awosika et
al. [19] integrate FL with explainable AI (XAI), improving
transparency—an important requirement in regulated financial
environments.

Scalability is another challenge. Huba et al. [20] find that
FL models scale effectively, with asynchronous FL converging
faster and using fewer resources than synchronous methods.
For deployment, Loconte et al. [21] propose serverless cloud
platforms to host FL models efficiently, while McDonnell
et al. [22] highlight the importance of reproducible cloud
infrastructure using Infrastructure as Code (IaC).

Across the literature, three recurring needs emerge: (1)
scalable and accurate fraud detection, (2) strong privacy and
security guarantees, and (3) real-time deployability in cloud
environments. Although FL has shown promise in improving
accuracy and preserving privacy, existing work provides lim-
ited guidance on securing FL pipelines end-to-end, ensuring
model transparency, or deploying resource-efficient real-time
fraud detection systems. These gaps motivate the present study,
which examines secure, cloud-based FL architectures for real-
time credit card fraud detection.

III. METHODOLOGY

The design of the proposed fraud detection system is
driven by deployment, scalability, and security requirements.
Cloud platforms offer elastic compute, operational resilience,
and reduced capital costs [23]; serverless architectures, in
particular, provide event-driven scalability and pay-per-use
efficiency well suited for real-time transaction scoring [24],
while Terraform enables reproducible infrastructure deploy-
ment through infrastructure as code (IaC) [25]. FL enables
privacy-preserving collaboration across distributed datasets,
but its exposure to inference and poisoning attacks necessitates
strong protections.

A. Design and Development

The proposed cloud-based system ingests anonymized credit
card transactions, which include features such as transac-
tion type, merchant, timestamp, and location. Exploratory
data analysis (EDA) is first conducted to identify patterns
and anomalies through graphical visualization. The data then
moves through a preprocessing pipeline: categorical features
are label-encoded, values are normalized using a standard
scaler to improve convergence and limit variance effects, and
the dataset is split into feature (X) and label (y) sets before
being divided into training and testing subsets. To simulate
FL, the training data is further partitioned across five clients
and converted into tensors for efficient processing.

In the federated learning (FL) setup, each client trains a
local model on its own data and transmits only encrypted



Fig. 1. Secure Federated Learning architecture

model parameters to a central server for aggregation [26].
To meet financial-sector privacy and security requirements,
homomorphic encryption protects model parameters in transit
and enables computation over encrypted values [4], while
cryptographic hashing is used to verify dataset integrity prior
to training [5]; any hash mismatch halts the workflow to
prevent poisoned data from entering the training pipeline.

To further protect the global model from corrupted or
adversarial clients, the system employs Fool’s Gold, which
applies cosine-similarity-based trust scoring to identify anoma-
lous client updates and exclude them from aggregation [6].
This layered defense strategy enhances the robustness of the
federated system against data poisoning and other model-
targeted attacks.

B. Initial Modeling and Implementation
Five clients are configured with distinct data partitions and

begin by verifying data integrity using a hash-based check
(Fig. 1, Fig. 2). Each dataset is initially hashed using the
SHA-256 algorithm, and the resulting value is stored; before
training, the data are rehashed and compared against the
stored reference, following standard cryptographic integrity
verification practices [5]. A match allows training to proceed,
while a mismatch indicates potential data compromise, triggers
a warning, and halts training to prevent poisoning attacks.

Following successful verification and local preprocessing,
each client initializes and trains a local model, encrypts

its parameters using homomorphic encryption, and securely
transmits the encrypted updates to the aggregation function,
consistent with the federated learning paradigm [26] and
privacy-preserving computation techniques [4]. To further pro-
tect against data-poisoning attacks during federated learning,
the aggregator applies Fool’s Gold anomaly detection with
cosine-based trust scoring to evaluate client gradient updates
(Fig. 3) [6]. Fool’s Gold measures the similarity of client
updates relative to prior global model changes and assigns
deviation-based trust scores, which are further normalized. Up-
dates that fall outside the acceptable trust range are penalized
and excluded from aggregation, while the remaining updates
are incorporated into a global model that is subsequently
initialized and securely distributed to all clients.

A thread pool executor is used to simulate the five clients in
parallel [27]. During each round, clients verify data integrity
via hashing, train locally, and return updated weights. The
implementation also supports injecting noise into a randomly
chosen client to simulate an attack. The system computes
client gradients, applies Fool’s Gold and cosine trust scoring to
detect anomalies, excludes compromised clients, then encrypts
and passes valid parameters to the secure aggregation function.
After aggregation, the global model is updated using the
decrypted weights.

The live model is stored in an Amazon S3 bucket and loaded
by an AWS Lambda function, which receives transaction data



Fig. 2. End-to-end secure federated learning architecture

Fig. 3. Anomaly detection process

from S3 and returns a fraud or non-fraud prediction. An API
Gateway HTTP trigger invokes the Lambda function, enabling
real-time inference through a REST endpoint. All cloud re-
sources, including the S3 bucket, API Gateway, HTTP trigger,
and Lambda configuration, are provisioned using Terraform to
ensure consistent and repeatable deployment across sandbox
environments through infrastructure as code (IaC) [25], [28].

When invoked, the Lambda function retrieves the model
from S3, loads it in evaluation mode, parses the incoming
transaction, extracts the features, and converts them into a
tensor. The model then generates an output, applies SoftMax to
compute class probabilities, and returns the predicted label in
an HTTP response. If the Lambda function fails, for example,
due to insufficient permissions, API Gateway returns an HTTP
500 error along with the exception message for debugging
[28].

Finally, testing the model in the cloud involves automating
the submission of selected transactions and capturing the
responses. It begins by loading previously unseen transactions
and converting them into a format that the Lambda function
can process. Then it invokes the function for each transaction
and records the predictions returned by the cloud-hosted
model.

C. Data Gathering

An open-source credit card transaction dataset [29] from
Kaggle is used to train and test the model. It contains more
than 1.85 million rows and 24 feature columns, providing
sufficient data for this work. The dataset includes features
such as transaction type, amount, location, and recipient
information, allowing it to approximate the kind of inputs
a production model would receive. However, it exhibits a
significant class imbalance, with most transactions labeled as
non-fraudulent (Fig. 4). Such an imbalance can bias a model
toward predicting the majority class [30]. To address this,
the Synthetic Minority Oversampling Technique (SMOTE) is
applied to generate synthetic samples of the minority (fraud)
class, improving class balance in the training set [31]. Fig. 5
shows the class distribution after applying SMOTE.

D. Local Training Step

For FL to work, each client must first train the model
locally. The client trains its local model on its own data, using
either GPU or CPU resources. During training, the data are
divided into mini-batches, passed through the model to gener-
ate predictions, and used to update the model’s parameters.



Fig. 4. Class imbalance before SMOTE

Fig. 5. Class imbalance After SMOTE

Gradients are cleared at the start of each epoch to ensure
proper optimization.

E. Train Client Function

The client training process defines the steps required to
train each local model and produce weights and metrics for
aggregation into the global model. Training begins by instan-
tiating the client model and tracking the training duration.The
Adam optimizer is used for its fast convergence [32]. The
model then trains locally for several epochs, iterating through
batches of client data, updating parameters, and computing the
resulting weights. Once training is complete, the client returns
its updated weights for aggregation into the global model.

F. Secure Aggregation Function

A secure aggregation function is used after clients submit
their locally trained model parameters to the global server.
It decrypts the client weights, computes the aggregated sum
of their trust scores and parameters, and prepares an updated
global model. A model template is then returned for distribu-
tion back to the clients.

G. Federated Loop

The FL loop orchestrates the entire process by coordi-
nating client training, secure weight exchange, and anomaly
detection. It evaluates performance across different training
rounds, recording metrics for comparison. As discussed before,
a thread pool is used to simulate parallel client training. During
each round, one client is randomly selected to receive noise
in its updates to mimic poisoned data. Client gradients are
computed and evaluated using Fool’s Gold anomaly detection,

Fig. 6. Confusion matrix for global model

which applies cosine-based trust scores to identify unreliable
clients [6]. The least trustworthy client is removed from the
aggregation pool. Secure aggregation is then performed, the
global model is updated, and the updated model template is
sent back to all clients.

IV. RESULTS AND DISCUSSION

The system is deployed using a serverless, cloud-based
architecture to ensure real-time inference, efficient resource
use, and consistent redeployment across environments. The
following are the tools and technologies used.

• Programming Language: Python
• Libraries: NumPy, pandas, random, Matplotlib, seaborn,

scikit-learn, TensorFlow, PyTorch, Crypto, pickle,
ThreadPoolExecutor

• Cloud Provider: AWS
• Infrastructure Tools: Terraform, AWS CLI
• Software: Visual Studio Code, Anaconda Navigator
The global federated model achieved 90.55% accuracy,

98.12% precision, 90.55% recall, and an F1-score of 94.15%.
These results indicate strong performance in distinguishing
fraudulent from non-fraudulent transactions. The high preci-
sion suggests that flagged transactions are very likely to be
truly fraudulent, while the high recall indicates the model
can correctly identify most fraudulent cases. Although these
metrics appear strong, it remains important to verify that they
are not inflated by issues such as overfitting. The confusion
matrix below summarizes the model’s prediction outcomes.

To evaluate the security features of the model, simulated
attacks were introduced, and the performance of the model
with security enabled was compared to a baseline without
security. The Fool’s Gold anomaly-detection mechanism im-
proved overall accuracy by correctly identifying and excluding
malicious or poisoned client updates (Fig. 7). This shows
that incorporating Fool’s Gold increases the robustness of the
global model and reduces the impact of adversarial data on its
performance.

A final experiment examined how increasing the number
of federated training rounds affected the performance of the



Fig. 7. Comparison of performance between secure vs non-secure model

TABLE I
COMPARISON OF MODEL METRICS

Metric FraudNet MLP CNN

Accuracy 90.55% 94.58% 90.39%

Precision 98.12% 94.59% 91.01%

Recall 90.55% 94.58% 90.39%

F1-Score 94.15% 94.58% 90.36%

global model. Raising the rounds from five to seven substan-
tially improved accuracy, whereas the improvement from three
to five rounds was minimal (Fig. 8). Additional rounds also
strengthened the effectiveness of security mechanisms, likely
because more rounds provide more information for computing
reliable trust scores. After seven rounds, the protected model
again outperformed the unprotected model.

The results also show that trust scores among clients are
initially widely dispersed but converge as the number of rounds
increases, reaching their most stable point around round six
before diverging slightly at round seven (Fig. 9), suggesting
that six rounds may be optimal for trust-score stability.

Further tests were conducted on three model architectures
to compare the impact of different security methods (Table I).
The best-performing model was the MLP. The CNN performed
the worst, with the lowest overall metrics, and the FraudNet-
inspired model performed between the two. In general, all
three models were effective in detecting fraudulent transac-
tions.

Testing across different training rounds showed that the
CNN was the most sensitive to changes in the number of
rounds, while the FraudNet model was the least affected. This
suggests that additional training iterations have a minimal
impact on FraudNet’s performance compared with the MLP
and CNN (Figs. 10-12). Overall, the MLP performed the most
consistently when using the previously implemented anomaly
detection and security mechanisms. The CNN’s performance
declined toward the end of training, whereas the FraudNet
model maintained higher accuracy after the seventh round
with security features enabled. These results indicate that the
security mechanisms helped preserve model accuracy under
attack (Figs. 13-15).

Fig. 8. Impact of malicious client per federated round on secure and non-
secure model

Fig. 9. Trust score evolution per client

Fig. 10. Model accuracy over number of rounds for CNN

Fig. 11. Model accuracy over number of rounds for MLP



Fig. 12. Model accuracy over number of rounds for FraudNet

Fig. 13. Comparison of MLP with and without security measures

Fig. 14. Comparison of CNN with and without security measure

Fig. 15. Comparison of Fraudnet with and without security measures

Fig. 16. Terraform template output

Fig. 17. Output of the Lambda function predicting a passed transaction

A final test simulated a real-world production environment
by deploying the model in the cloud and invoking it through an
AWS Lambda function [28]. The model received transaction
data and returned a prediction indicating whether the transac-
tion was fraudulent or not, demonstrating how it would operate
in production. A Terraform template was used to manage
and track infrastructure changes (Fig. 16). When triggered,
the Lambda function processed each transaction through the
model and returned the corresponding prediction (Fig. 17).
These results confirm that the public cloud can reliably host
the model and support real-time inference workloads.

V. CONCLUSIONS AND FUTURE WORK

This work presents a proof-of-concept federated learning
(FL) system for credit card fraud detection that integrates cryp-
tographic and machine-learning–based security mechanisms to
enhance robustness against poisoning and inference attacks.
Model parameters and training data are protected using homo-
morphic encryption and cryptographic hashing, while anomaly
detection successfully identifies malicious client updates. The
results demonstrate that FL enables collaborative model train-
ing without centralized data storage while maintaining strong
detection performance.

Experimental evaluation shows that the model accurately
classifies fraudulent transactions and remains resilient under
adversarial conditions. Deployment in a cloud environment
further confirms its feasibility for real-time inference in a
production-like setting. These findings support the use of FL as
a secure and effective approach for fraud detection in privacy-
sensitive financial environments.

Limitations include evaluation against only a single mali-
cious client and the use of static security mechanisms, which
may not fully reflect distributed or adaptive attacks [3], [6].
Future work will focus on improving model performance,
integrating continuous learning and adaptive anomaly detec-
tion, and extending security through techniques such as device
fingerprinting [3]. Additional enhancements include explor-
ing hybrid or multi-cloud deployments to improve system
resilience against provider outages [23].
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