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Abstract—Languages represent irreplaceable vessels of cultural
knowledge and identity. Critically endangered Indigenous lan-
guages are languages spoken by Indigenous communities that face
existential threats to their survival. This paper investigates the use
of neural machine translation (NMT) frameworks to support the
revitalization efforts of the Myaamia (Miami-Illinois) language, a
critically endangered Algonquian language. In this study, we train
several large language models (LLMs), including both encoder-
decoder and decoder-only architectures, on English–Myaamia
sentence pairs compiled from archival and dictionary sources. We
compare model architectures under conditions of extreme data
scarcity and evaluate the impact of post-training quantization on
translation quality and on-device deployment. The paper provides
a benchmark for translation data and how several LLM models
perform. Robust evaluation is conducted using the SacreBLEU
and chrF++ metrics. Experimental evaluation demonstrates that
the mt5 large.pte model variant, an ExecuTorch-exported multi-
lingual encoder–decoder baseline attained the highest translation
quality, achieving a SacreBLEU score of 39.67 and a chrF++ score
of 80.37 for English to Myaamia translation. This result paves
the way for applying MT systems to the revitalization of other
extremely low-resource languages. Finally, we present a fully
offline Android prototype, highlighting both the promise and the
current limitations of LLMs for community-focused endangered
language revitalization.

Index Terms—Fine-tuning, large language models, machine
translation, natural language processing, transformer architec-
tures.

I. INTRODUCTION

LLMs such as Bidirectional Encoder Representations from
Transformers Multilingual Bidirectional and Auto-Regressive
Transformers (mBART) [1], mT5 [2], MarianMT [3], Gener-
ative Pre-Training (GPT) [4], and Llama [5] have transformed
natural language processing (NLP) by learning universal lan-
guage representations from massive unlabeled corpora. These
models achieve strong performance on many downstream
tasks, including machine translation (MT), even with limited
labeled data [6]. However, their behavior in extremely low-
resource, endangered languages remains underexplored.

Despite recent advances in NMT, significant barriers remain
for endangered languages such as Myaamia, the language of
the Miami People. Current state-of-the-art models are predom-
inantly designed for and trained on high-resource languages,

leaving a gap in our understanding of how these architec-
tures perform under conditions of extreme data scarcity [7].
Specifically, the efficacy of transfer learning remains largely
unexplored for languages that lack representation in massive
multilingual corpora.

Furthermore, the comparative suitability of different ar-
chitectures for this domain is underexplored. While en-
coder–decoder models like MarianMT, mT5, and mBART are
standard for translation, they lack comprehensive evaluation
in revitalization contexts. Simultaneously, the potential of
adapting decoder-only LLMs, such as Llama, for specialized
translation tasks remains largely experimental. Finally, the
practical feasibility of deploying these models in real-world
community settings is uncertain. There is a notable lack
of documentation regarding how model quantization impacts
translation quality for underrepresented languages and whether
on-device inference can be achieved without compromising the
utility of the tool. To address these challenges, and building
on these ideas, this research investigates the development,
training, and evaluation of LLMs for MT in extremely low-
resource settings. Specifically, it examines whether transfer
learning techniques can effectively enhance translation quality
for underrepresented languages, with a focus on Myaamia.
The study conducts a comparative analysis of widely used
encoder–decoder models, including MarianMT, mT5, and
mBART, to assess their ability to leverage multilingual pre-
training for improved translation performance under limited
data conditions [6], [8]–[10].

As LLM inferencing requires high-performance GPUs,
common LLM architecture relies on a cloud computing frame-
work where mobile devices offload the LLM computation to a
server hosted on the internet cloud. However, most of the peo-
ple who speak in endangered languages live in an area where
internet connectivity is not available. Thus, we need a lan-
guage translator that can run on mobile devices itself without
requiring any internet connectivity. This research explores on-
device inference through model quantization, evaluating how
various quantization strategies impact translation accuracy and
computational efficiency. A decoder-only architecture, Llama,
given its wide on-device support, is also incorporated into



the study. The Llama model is fine-tuned for translation and
benchmarked against encoder–decoder baselines to determine
its suitability for low-resource MT.

Overall, this work aims to assess the feasibility of applying
modern machine learning technologies to support language
revitalization efforts. By evaluating model performance before
and after quantization and by comparing architectures across
translation tasks, the research seeks to determine whether
contemporary LLM approaches can meaningfully contribute
to the preservation and revitalization of endangered languages,
in this study, Myaamia.

This study faces several critical challenges, foremost among
them being the severe scarcity of parallel training data inherent
to the Myaamia language and its rich, complex morphology.
Furthermore, the application of LLMs to the revitalization of
dormant languages is a nascent domain, with limited existing
literature or benchmarks for comparison. Finally, the project
addresses a technical gap in edge computing: while tooling
for on-device inference of decoder-only architectures (such
as Llama) has proliferated, the ecosystem for quantizing and
deploying encoder–decoder models (such as mBART or mT5)
remains comparatively under-documented and fragmented.

Despite the inherent challenges of data scarcity, recent
literature has validated the feasibility of low-resource NMT
through the adoption of pre-trained multilingual models and
transfer learning strategies [7], [11], [12]. These advance-
ments have proven effective across various endangered lan-
guage case studies, demonstrating that modern NMT architec-
tures can successfully support language revitalization efforts
[9], [13], [14].

The study begins by detailing the data collection pro-
cess, which leverages Myaamia digital resources, specifi-
cally the Indigenous Languages Digital Archive (ILDA) dic-
tionary and archival materials, to construct a specialized
English-Myaamia parallel corpus [15]. Following the data pre-
processing pipeline, we systematically fine-tune and compare
established encoder-decoder architectures (MarianMT, mT5,
mBART) against the decoder-only Llama model. Crucially,
Llama is integrated into this comparative analysis to capitalize
on its robust on-device ecosystem. Also, its extensive library
support and documentation offer a more streamlined pathway
for offline mobile deployment compared to traditional encoder-
decoder frameworks. The paper concludes with a compre-
hensive analysis of the trade-offs between translation quality
and the practical feasibility required for community-facing
applications.

The contributions of this paper are threefold:
1) We present, to the best of our knowledge, the first

systematic comparison of variants of MarianMT, mT5,
mBART, and Llama for the Myaamia language.

2) We evaluate the effect of post-training quantization on
translation quality for an endangered, extremely low-
resource language.

3) We implement a fully offline mobile prototype that per-
forms English to Myaamia translation on-device, demon-
strating the feasibility of community-facing deployment.

The source code is publicly available in an open-source
GitHub repository [16].

II. BACKGROUND

In this section, we discuss the context of the study. First, we
discuss the language that we are focusing on: Miamia, then
we discuss what machine translation is, followed by related
studies and the importance of on-device inferencing.

A. Myaamia Language

This study situates the development of a English-Myaamia
NMT tool within the intersecting domains of endangered
language revitalization and neural language technologies. The
Myaamia language is a critically endangered Algonquian
language that nearly ceased to be spoken due to displacement
and assimilation policies [8]. Recent revitalization efforts,
led by the Miami Tribe of Oklahoma and the Myaamia
Center at Miami University, have focused on reclaiming both
linguistic and cultural knowledge through digital archives and
educational initiatives. From an NLP perspective, Myaamia is
both an endangered and a extremely low-resource language:
it lacks large digital corpora and established NLP tools, but it
benefits from curated bilingual resources such as the Indige-
nous Languages Digital Archive (ILDA) and the Miami-Peoria
dictionary [15].

B. Machine Translation

Machine Translation (MT) refers to the use of computer-
based systems to translate text from one natural language to
another, with or without human involvement. Bilingual and
multilingual translation represent two fundamental paradigms
in MT, each with distinct methodologies, applications, and im-
plications for linguistic resource availability. Bilingual transla-
tion refers to systems explicitly designed to translate between
a single source-target language pair, such as English-French.
In contrast, multilingual translation involves models capable
of handling multiple languages within a unified architecture,
either through shared parameters or language-specific mod-
ules [17], [18].

Since the recent boom in machine learning driven by
transformer architectures, pretrained transformer-based models
have significantly advanced the field of MT by enabling high-
quality translations across a wide range of languages. These
models leverage large-scale multilingual corpora and transfer
learning, making them particularly effective in low-resource
language scenarios [6], [13]. Among the many models devel-
oped, this research focuses on several prominent architectures
such as MarianMT, mT5, mBART, and Llama due to their
relevance to low-resource language translation and their strong
community/technical support [6], [19].

MarianMT is a family of NMT models that leverage the
MarianNMT framework, an efficient and scalable NMT engine
originally developed by the University of Edinburgh [3], [20],
[21]. mBART (Multilingual BART) is a multilingual sequence-
to-sequence model developed by Facebook AI [1]. It is based



on the BART [22] architecture. While BART was only pre-
trained for English, mBART is pretrained as a denoising auto-
encoder on large-scale monolingual corpora in different sets of
languages. The key terminology for mBART includes “mul-
tilingual denoising pre-training,” where the model learns to
reconstruct original texts from corrupted (noised) inputs across
multiple languages, and “sequence-to-sequence” (Seq2Seq)
learning, which means the model is designed to generate a
target sequence (e.g., a translation) from a source sequence.

The mT5 model [2] is a multilingual extension of Google’s
T5 [23], pre-trained on data from more than 101 languages
and available in five parameter scales: mT5-Small (≈ 300M
parameters), mT5-Base (≈ 580M), mT5-Large (≈ 1.2B), mT5-
XL (≈ 3.7B), and mT5-XXL (≈ 13B). Its architecture and
training methodology closely follow those of the original T5
model.

Large Language Model Meta AI (Llama) is a family of
LLMs introduced by Meta AI in February 2023 [5]. The
models span a wide range of parameter sizes, from 1 bil-
lion to 2 trillion. While the initial release was limited to a
foundation model, beginning with Llama 2 Meta AI also pro-
vided instruction-tuned variants alongside the base models [5].
With the introduction of Llama 3 and a dedicated public
web interface, Meta integrated Llama-based virtual assistant
capabilities into Facebook and WhatsApp in selected regions.
The most recent version, Llama 4, was released in April
2025; its behemoth variant contains a massive 2 trillion total
parameters. [5], [24].

C. Related Work

Previous research has demonstrated promising potential in
leveraging modern approaches, such as NLP and MT, for
low-resource and language revitalization efforts. Foundational
surveys by Hedderich [7] and Kozhirbayev [6] highlight the
diverse strategies available for addressing data scarcity, with
both emphasizing the critical role of multilingual pre-trained
models in cross-lingual transfer.

A particularly promising avenue identified in this literature
is the use of pre-trained multilingual sequence-to-sequence
models to overcome the lack of parallel data [11]. For
instance, Chen and Abdul-Mageed [12] demonstrated that
fine-tuning bilingual and multilingual pre-trained models on
Spanish–Indigenous language pairs outperforms traditional
approaches, achieving state-of-the-art results. Similarly, re-
searchers have successfully shown that fine-tuning large mod-
els, such as mBART50, significantly enhances translation
quality for low-resource pairs [6], [13].

Beyond theoretical improvements, these methodologies
have been applied to critically endangered languages with
tangible success. Recent studies on Cherokee [14] and
Colombian Indigenous languages [25] provide empirical ev-
idence that neural machine translation can effectively sup-
port cultural preservation. In the context of the Ainu lan-
guage, Miyagawa [9] achieved a robust 32.9 BLEU for
Japanese(Jpn)→Ainu(Ain) translation using MarianMT. Sub-
sequent research by Igarashi and Miyagawa [10] on multi-

Fig. 1: A map from “Federal Communications Commission”
showcasing the area with and without internet coverage by
three major US cellular networks (AT&T, T-Mobile, and Ver-
izon) [26]. Note the light gray regions where no cellular data
coverage is available. Most of the indigenous tribes inhabit
these coverage gaps.

lingual models, specifically the mt5-base model, showed a
significant increase in performance, achieving scores of 31.83
for Ain to Jpn and 39.06 for Jpn to Ain.

Collectively, this literature builds the base for this research,
providing a strong foundation for using MT and NLP tech-
nologies to preserve endangered languages like Myaamia.

D. On-Device Inference

Integrating LLMs into mobile applications transforms com-
munication by providing instantaneous, context-aware NLP
capabilities directly on personal devices. As smartphones
become ubiquitous, embedding NMT models within mobile
applications enables real-time translation for language learn-
ing, travel, and cross-cultural interactions, crucially extending
these benefits to speakers of low-resource and endangered
languages [27], [28]. Such on-device translation tools also
serve as valuable language revitalization resources, enabling
users to learn and engage with endangered languages like
Myaamia.

Offline translation support is of particular importance. It
ensures accessibility in areas with limited or unreliable internet
connectivity. Fig. 1 illustrates that, even today, coverage gaps
persist across parts of the United States, including regions
served by one of the largest mobile network operators by
subscriber count. This observation underscores the need for
a fully offline translation system. Moreover, offline processing
enhances user privacy by ensuring that sensitive text is han-
dled locally. For many Indigenous communities, including the
Miami people, language is sacred and deeply tied to cultural
identity and heritage. As a result, community members may be
reluctant to transmit linguistic data to external servers or allow
it to be made public without explicit community approval.
Local, on-device translation therefore aligns more closely
with community preferences for privacy, data sovereignty,
and cultural stewardship. This is particularly important in
educational and community settings, where data security and
independence from centralized infrastructure are key priorities.



III. PROPOSED FRAMEWORK

To address the challenges of low-resource machine trans-
lation and on-device deployment for Myaamia, this study
proposes a holistic experimental framework that integrates
transfer learning with aggressive model compression. This
section describes the data preparation pipeline, supervised and
instruction-based fine-tuning strategies, post-training quantiza-
tion for on-device inference, comparative evaluation metrics,
and the implementation of a mobile prototype.

A. Proposed Approach

Our approach moves beyond simple model training; it
systematically evaluates the trade-offs between architectural
complexity (Encoder–Decoder vs. Decoder-only), translation
quality, and computational efficiency. By benchmarking state-
of-the-art multilingual models against fine-tuned LLMs, we
aim to identify the optimal configuration for revitalizing
endangered languages in resource-constrained environments.
The specific components of our technical pipeline are detailed
below.

1) Data Preparation and Standardization: The dataset
used in this study consists of aligned English-Myaamia trans-
lation pairs compiled from diverse resources. Our dataset
consists of four tab-separated (TSV) files summarized in
Table I. The first three were sourced from the ILDA dictionary,
which contains bilingual English-Myaamia texts curated by the
Myaamia Center, including community-relevant narratives and
validated translations from “Myaamia Neehi Peewaalia Kaloo-
sioni mahsinaakani (A Miami-Peoria Dictionary)” [15]. The
storybook parallel data was extracted from “Myaamia Neehi
Peewaalia Aacinmoona Neehi Aalhsoohkaana (Myaamia and
Peoria Narratives and Winter Stories)”, the first published
collection of Miami-Illinois texts. This book includes 44
narratives, with 28 presented in the Myaamia, Peoria, or
Wea dialects alongside English translations edited by David
J. Costa. An example Myaamia sentence and its English
translation are shown below.

English: ’No, it is not evening.
It is still noon.’

Myaamia: ’moohci, alaakowihsiinoowi.
eehkwa maayaahkweeci’

To evaluate the direct adaptability of pre-trained models to
raw low-resource data, minimal manual pre-processing was ap-
plied. We did not perform custom morphological segmentation
or train new tokenizers from scratch. Instead, we leveraged
the model-specific tokenization pipelines inherent to each
architecture. For the encoder–decoder models (MarianMT,
mT5, mBART) and the decoder-only model (Llama), the raw
text pairs were processed using their respective pre-trained
tokenizers. This approach ensures that the input data is mapped
directly to the models’ existing embedding spaces, allowing
the fine-tuning process to adjust the weights based on the
standard input representations used during the models’ original
pre-training. This design choice reflects real-world language

TABLE I: Summary of the Dataset Files

File Name Entries Description
sentences 1,935 Parallel sentence pairs collected from ILDA.
command
forms

3,819 Command forms sourced from ILDA, in-
cluding dictionary-validated translations.

basic
forms

12,892 Basic forms extracted from ILDA, including
dictionary-validated translations.

story
book

455 Storybook sentences from Myaamia and
Peoria Narratives and Winter Stories.

revitalization efforts, which are often led by linguists and
community practitioners with limited exposure to the technical
intricacies of model architectures, and therefore emphasizes
simple, out-of-the-box fine-tuning using raw data.

2) Supervised Fine-Tuning of Encoder–Decoder Architec-
tures: We employ a transfer learning approach using three
distinct encoder–decoder architectures: MarianMT, mT5, and
mBART. These models’ variants, listed in Table II, were
selected for their proven efficacy in multilingual contexts.

MarianMT: Utilized for its lightweight architecture, serving
as a baseline for efficiency [3].

mT5 & mBART: Utilized to test the hypothesis that mas-
sive multilingual pre-training (on 100+ languages) provides
a “knowledge bridge” that aids in learning unseen languages
like Myaamia [6], [11]. We fine-tune the weights of these pre-
trained models specifically on our Myaamia corpus, optimizing
for the sequence-to-sequence translation objective.

3) Instruction Tuning of Decoder-Only LLM (Llama)
via Parameter-Efficient Fine-Tuning (Low-Rank Adaptation,
LoRA): To evaluate the generative capabilities of modern
LLMs, we incorporate the Llama architecture. Unlike tra-
ditional MT models, Llama, specifically meta-llama/Llama-
3.2-1B-Instruct, is a decoder-only model trained using a
causal language modeling objective. We adapt this model
for translation through instruction tuning using parameter-
efficient fine-tuning with LoRA, keeping approximately 1%
of the model parameters trainable, conditioning the model to
treat translation as a text generation task. This is achieved by
structuring the training data as instruction–response pairs with
explicit prompts (e.g., “Translate the following English text to
Myaamia:”), enabling the model to learn translation behavior
within its existing generative framework.

4) Post-Training Quantization (PTQ) for On-Device Infer-
ence: A critical contribution of this work is the evaluation of
model compression. We apply PTQ to convert model weights
from standard floating-point precision (FP32 or FP16) to
lower-precision formats (4-bit).

5) Comparative Evaluation Metrics: To ensure an objec-
tive assessment of translation quality, we utilize standard
automated metrics, SacreBLEU and chrF++ (Character n-
gram F-score Plus Plus). chrF++ is particularly relevant for
this study as it correlates better with human judgment for
morphologically complex and low-resource languages than
word-level metrics. We calculate these metrics across most
model variations (uncompressed vs. quantized) to provide a
granular analysis of performance trade-offs.



B. Prototype Implementation and Mobile Integration

To demonstrate the feasibility of bringing revitalization tools
directly to the Myaamia community, we developed a functional
mobile prototype. While encoder–decoder architectures are
traditional standards for machine translation, we selected the
decoder-only Llama architecture for the deployment phase.
This decision was driven by the greater maturity of the on-
device inference ecosystem for decoder-only models, which
currently provides more robust tooling for model compression
and mobile execution than is available for encoder–decoder
counterparts.

The implementation pipeline consists of three distinct
stages: Model Adaptation, Format Conversion and Quantiza-
tion, and Mobile Application Integration. These are discussed
in details below.

1) Model Adaptation and Prompt Engineering: The Llama
model, meta-llama/Llama- 3.2-1B-Instruct, was fine-tuned us-
ing a supervised learning approach on the prepared English
to Myaamia parallel corpus. Unlike standard encoder-decoder
models, Llama operates as a text-continuation engine. There-
fore, we structured the training data using specific prompt
templates (e.g., “System: You are an expert translator.”, “User:
Translate the following English text to Myaamia: [Input Seg-
ment]”) to condition the model for the translation task. This
instruction-tuning aligns the model’s generative capabilities
with the specific requirements of language translation.

2) Conversion and Quantization Strategy: To transition
from a research environment to a mobile runtime, we evaluated
two emerging inference formats:

• ExecuTorch (.pte): PyTorch’s native solution for edge-
device deployment. In this work, the Optimum-
ExecuTorch library was used to export the models [29].

• GGUF (GPT-Generated Unified Format): A binary for-
mat designed for fast loading and memory mapping on
consumer hardware. The llama.cpp library was used for
both model export and inference [30].

While we explored the .pte format for its theoretical com-
patibility with the PyTorch ecosystem, we prioritized the
GGUF format for the final prototype due to its extensive
community support [30]. Following conversion, we applied
PTQ (Q4 K M) to the f16 GGUF model. This step reduced
the model’s precision to lower-bit representations (4-bit),
significantly compressing the file size and reducing memory
bandwidth requirements without requiring retraining of the
neural network [31].

3) Android Integration via React Native: The client-side
application was developed using React Native, enabling a
cross-platform codebase. To interface the JavaScript layer
with the underlying C++ inference engine, we employed the
llama.rn library, which initializes the GGUF model and per-
forms inference directly on the Android device’s CPU/GPU.
The GGUF model was deployed to the device via ADB,
copied to the app’s private storage, and the temporary file was
removed. It was then integrated and loaded within the React
Native application code for on-device inference.

Quantized
Model

Local Storage

User Interface

User Input
(How did you

do that?)
Translated

Output
(taaniši iišileniyani)

(a) On-Device Architecture.

(b) UI of the lan-
guage translator mo-
bile application.

Fig. 2: Proposed on-device architecture and user interface of
the system.

The resulting prototype enables fully offline inference.
Users interact with a standard chat interface, where English
text is input, processed locally by the quantized Llama model,
and returned as Myaamia translation output. This design
preserves data sovereignty and ensures reliable operation in
areas with limited or no internet connectivity. The on-device
architecture and user interface are illustrated in Fig. 2.

IV. EVALUATION

The evaluation of NMT systems is a critical component
in the development and deployment of machine translation
technologies. Evaluation metrics provide quantitative and qual-
itative means to assess how well a system translates text
from a source to a target language, guiding model selec-
tion, benchmarking, and iterative improvements. Evaluation
metrics are also categorized into two parts Automatic metric
and Human based evaluation [32], [33]. Automated metrics
were primarily used in this study because they provide a
standardized, efficient, and reproducible means of evaluating
translation performance.

A. Performance Metrics

The evaluation incorporates two widely used automated
metrics to assess translation quality.

1) SacreBLEU: SacreBLEU is an automated evaluation
metric widely adopted for machine translation research [34].
It is a standardized implementation of BLEU (Bilingual Eval-
uation Understudy) [35], designed to provide consistent and
reproducible scores across studies by controlling tokenization
and text normalization settings. SacreBLEU measures n-gram
precision by comparing the overlap between the machine-
generated translation and one or more human reference trans-
lations, and it applies a brevity penalty to discourage overly
short outputs. This metric is valued for its objectivity and
scalability, and has become the default choice for benchmark-
ing NMT systems due to its transparent, comparable score
reporting [32], [33].
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Fig. 3: Evaluation performance comparison across different models.

TABLE II: Training performance (runtime and loss) and evaluation results on the validation set (SacreBLEU and chrF++)
across models for English to Myaamia translations.

Model Runtime (s) Loss SacreBLEU chrF++
Helsinki-NLP/opus-mt-en-fr 4752.70 0.38 12.77 75.02
Helsinki-NLP/opus-mt-en-mul 5920.89 0.45 17.35 69.52
Helsinki-NLP/opus-mt-tc-bible-big-mul-mul 7083.66 0.32 17.97 69.27
google/mt5-small 8755.20 3.82 0.60 18.34
google/mt5-base 13961.44 2.52 4.53 37.23
google/mt5-large 37340.53 1.04 17.19 62.70
facebook/mbart-large-50 33988.30 0.17 6.61 29.31
meta-llama/Llama-3.2-1B-Instruct 531.60 0.60 1.60 22.89

2) chrF++: chrF++ is an automatic metric for evaluating
machine translation output that combines character n-gram
precision and recall with additional word n-gram features. It
computes an F-score by averaging over all character and word
n-grams, using a default character n-gram order of 6 and a
word n-gram order of 2. The final score is obtained using
arithmetic mean averaging across n-gram orders. [36].

We specifically included chrF++ due to the morphological
characteristics of Myaamia. As Myaamia is a polysynthetic
language where a single word can contain complex grammati-
cal information, word-level metrics like BLEU can excessively
penalize minor morphological errors. chrF++ operates at the
character n-gram level, providing a more granular and im-
proved correlation with human judgment for morphologically
rich languages [36].

B. Evaluation Setup

To ensure a rigorous and reproducible assessment of
model performance, we implemented a standardized evalua-
tion pipeline. The experimental design focuses on measuring
semantic fidelity and convergence stability using industry-
standard metrics adapted for low-resource environments.

1) Data Partitioning: Given the limited size of the available
corpus, we adopted a 70/30 training–validation split instead of
the conventional train-validation-test partition. This relatively
large validation split, compared to standard high-resource
settings, was chosen to ensure that the evaluation results were
representative and robust against outliers, a common pitfall in
low-resource machine translation [7]. Also, this 2-way splitting

approach is commonly adopted in endangered and extremely
low-resource language research where creating a three-way
split would leave insufficient data for model training [9], [14].
However, unlike the other models trained for 40 epochs on the
70/30 split, the Llama model was trained on a 90/10 split for
3 epochs to accommodate its larger architecture and reduce
training time.

2) Metrics Implementation: Consistent with our training
pipeline, we employed the Hugging Face Evaluate library to
initialize and compute the evaluation metrics.

3) Evaluation Protocol & Model: Model performance was
monitored and recorded throughout the fine-tuning process,
with evaluation performed at the end of each epoch. The
validation set was used to monitor training progress at each
epoch and to select the best-performing checkpoint. This
epoch-level evaluation enabled monitoring of training stability,
identification of convergence behavior, and early detection
of overfitting, which is a critical concern when fine-tuning
large-parameter models on small datasets. All reported metrics
therefore reflect validation set performance.

Fig. 3 shows the SacreBLEU and chrF++ scores over
40 training epochs. It can also be observed that the model
converges after approximately 10 epochs. Table II presents
a comparison of fine-tuning runtimes and resulting training
losses with highest achieved validation scores across all eval-
uated architectures.

Interestingly, the quantized model outperformed the original
full-precision model across evaluation metrics, as shown in
Table III. This behavior can be attributed either to the regular-



TABLE III: Evaluation results of exported/quantized models on English to Myaamia translation. *The model used for on-device
inference on Realme 7 pro (Android 12).

Model Size (MiB) SacreBLEU chrF++ Infer. (s)
mt5 large Q4 K M.gguf 757.79 38.60 79.92 –
llama3 1b finetune Q4 K M.gguf* 762.81 1.05 21.13 11.60
llama-3.2-1b-8da4w-8w.pte 914.45 0.72 17.92 –
mt5 large.pte 4367.83 39.67 80.37 –

ization effect introduced by quantization [37], which improves
generalization by reducing overfitting, or to implementation
differences, such as better-tuned inference libraries, superior
default sampling parameters, or more efficient tokenization.
To investigate this, we converted the fine-tuned google/mt5-
large model to a 16-bit precision ExecuTorch (.pte) format
and evaluated it on the same validation set used for the
google/mt5-large model. The model achieved a SacreBLEU
score of 39.67 and a chrF++ score of 80.37, suggesting that
the observed improvement was not due to the regularization
effect of quantization but rather the result of differences
in implementation. However, this remains an active area of
research and further investigation is required to validate this
finding.

Based on Table II and Table III the following observations
can be made :

• Best Performers: Among the non-exported models,
“Helsinki-NLP/opus-mt-tc-bible-big-mul-mul” (Multilin-
gual) achieved the highest SacreBLEU score of 17.97,
while “Helsinki-NLP/opus-mt-en-fr” obtained the highest
chrF++ score of 75.02. Among the exported models, the
quantized “mt5 large Q4 K M.gguf” achieved a Sacre-
BLEU score of 38.60 and a chrF++ score of 79.92,
whereas the non-quantized “mt5 large.pte” ExecuTorch
model achieved a SacreBLEU score of 39.67 and a
chrF++ score of 80.37.

• Llama Performance: With SacreBLEU and chrF++ scores
of 1.6 and 22.89, respectively, the “meta-llama/Llama-
3.2-1B-Instruct” model illustrates that standard decoder-
only LLMs perform poorly on low-resource endan-
gered language translation relative to specialized encoder-
decoder models.

Moreover, Tables II and III report three complementary
performance indicators beyond translation quality of the best
model checkpoint. Training runtime reflects the computa-
tional cost of fine-tuning each architecture: the Llama model
completes training in 531 s due to the parameter efficiency
of LoRA, whereas the larger mT5-large requires 37,341 s.
Training loss measures convergence by assessing the model’s
error on the training data during training. Finally, on-device
inference time, measured on a Realme 7 Pro smartphone
running Android 12, shows that the quantized Llama model
requires an average of 11.6 s per sentence, which highlights
current limitations for real-time interaction.

V. CONCLUSION

Preserving and revitalizing critically endangered languages
requires translation technologies that are both effective and

accessible to the communities that use them. This study
investigated the feasibility of NMT systems to support the
revitalization of Myaamia, a critically endangered Indigenous
language of the Miami people. In particular, the research
examined the extent to which multilingual pretrained models
can deliver effective translation performance in unseen low-
resource settings, as well as their practicality for on-device
deployment in community-oriented use. By benchmarking
encoder–decoder architectures against a decoder-only LLM,
we evaluated their suitability for extremely low-resource trans-
lation settings.

The experimental results indicate that multilingual en-
coder–decoder models, such as Google’s mT5 and Helsinki-
NLP, achieve promising translation performance. Notably, the
ExecuTorch-exported mT5 variant attained substantially higher
quality (SacreBLEU: 39.67, chrF++: 80.37) compared to the
fine-tuned Llama baseline (SacreBLEU: 1.60, chrF++: 22.89)
and its GGUF-exported variant (SacreBLEU: 1.05, chrF++:
21.13). This showcases that, while Llama models perform well
on general-purpose tasks such as code generation or question
answering, they exhibit limited effectiveness in low-resource,
task-specific applications such as machine translation. In con-
trast, encoder–decoder models demonstrate superior perfor-
mance and data efficiency in low-resource settings.

Despite the observed performance gap, the development of
a React Native prototype demonstrates the technical feasibility
of running quantized inference locally on mobile devices.
Although current performance limits restrict immediate real-
world deployment, these results suggest that on-device trans-
lation is a promising direction rather than an impractical one.
Further research is needed to improve usability and translation
quality for community adoption.

Future work should focus on leveraging encoder–decoder ar-
chitectures for efficient on-device inference, expanding parallel
data resources to improve model generalization, and further
investigating evaluation discrepancies between Hugging Face
models and their exported counterparts. Additionally, incorpo-
rating human evaluations from members of the Miami com-
munity will be essential to ensure that translation outputs are
linguistically accurate, culturally appropriate, and supportive
of ongoing revitalization efforts.

Overall, this research contributes to the broader study of
NMT for low-resource and unseen languages [6], [7], [13],
highlighting both the limitations and potential of modern
NMT techniques in supporting language revitalization and
community-centered applications.
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