
1

CR-Honeynet: A Cognitive Radio Learning and
Decoy Based Sustenance Mechanism to Avoid

Intelligent Jammer
Suman Bhunia, Edward Miles, Shamik Sengupta, and Felisa Vázquez-Abad

Abstract—Cognitive Radio Network (CRN) enables secondary
users to borrow unused spectrum from the proprietary users
in a dynamic and opportunistic manner. However, dynamic
and open access nature of available spectrum brings a severe
sustenance challenge amongst CRNs which makes them vul-
nerable to various spectrum etiquette attacks. Jamming-based
denial-of-service (DoS) attack poses serious threats to legitimate
communications and packet delivery. A rational attacker targets
specific transmission characteristics to find the highest impacting
connection of CRN and causes maximum disruption. With the
help of software-defined radios, we have shown that an attacker
can intelligently target a particular communication. In this paper,
inspired by the honeypot concept in cybercrime, we propose a
honeynet based defense mechanism, which aims to deter the
attacker from jamming legitimate communications. The honeynet
passively learns the attacker’s strategy from the history of
attacks and actively adapts preemptive decoy mechanisms to
prevent attacks on legitimate communications. Simulation results
show that the with the help of honeynet mechanism, CRN
successfully avoids jamming attacks and thereby improves system
performance regarding packet delivery ratio. We further built a
prototype using off-the-shelf software defined radio that proves
the effectiveness of the proposed mechanism.

Index Terms—Cognitive Radio, Jamming, Honeynet, Stochastic
Learning, USRP, GNURadio

I. INTRODUCTION

Dynamic Spectrum Access (DSA) based Cognitive Radio
(CR) [2] aims to provide a solution for spectrum scarcity
by allowing Secondary Users (SUs) to use unused licensed
spectrum on a non-interfering basis. In contrast to conven-
tional wireless technologies, a CRN can reconfigure itself by
controlling its operating frequency, channel bandwidth, modu-
lation techniques, transmission power, etc. [2]. Because of the
authorized primary user (PU) priority, SUs must periodically
sense the channel of communication for the presence of the
PU. If the current channel is blocked by the presence of PU
of that channel, SU must switch to another free channel.

The “open” philosophy of the cognitive radio paradigm
makes CRN susceptible to jamming-based denial-of-service
(DoS) attacks by smart malicious users [2]–[4]. An attacker
can scan through channels, identify legitimate SU commu-
nications and then transmit a jamming signal on the same

This research was supported by NSF CAREER grant CNS #1346600. A
preliminary version of this paper has been presented at IEEE MILCOM 2014
[1].

S Bhunia is with University of California, Davis. E Miles is with In-
telliSource. S Sengupta is with University of Nevada, Reno. F Vázquez-
Abad is with City University of New York. (e-mail: sbhunia@ucdavis.edu,
elmiles@nevada.unr.edu, ssengupta@unr.edu, and felisav@hunter.cuny.edu)

channel or fragment of the channel causing disruptive in-
terference to the SU, which in effect can completely block
the legitimate SU’s transmission [2], [3]. However, note that,
from an intelligent and rational attacker’s perspective, jamming
a communication randomly will not yield optimal result;
rather an attacker can be most disruptive if it targets the
communication that impacts the CRN most severely upon
interruption [5]–[9]. The attacker succeeds in determining
highest impacting communication [8], [10]. Many transmission
characteristics can be used to find out the target transmission,
as for example, highest transmission power, highest data
rate, modulation scheme, packet inter-arrival time, frequency
shift, quality of route with end-to-end acknowledgments, etc
[11]–[16]. Again, an attacker may also use combination of
transmission characteristics instead of a single characteristics
to find out the highest impacting communication. To defend
against such attackers, a CRN must learn about the strategy
(the targeted transmission characteristic(s)) that the attacker
uses to figure out the highest impacting communication. The
attacker’s strategy of finding highest impacting communication
can be used as a trap by the defending CRN to detract the
attacker from attacking legitimate communications.

Honeypot is a well-known tool in cybersecurity where a
resource, called honeynode is dedicated with lowest possible
security to collect extensive data from cyber attacks [17].
The attackers or cyber bots get a false impression of hacking
a real system by intruding the honeynode. Analyzing this
data allows the defender to extract information or pattern
of the attacks and even diagnose or detect new threats or
vulnerabilities in the system that are yet to be discovered. In
this paper we propose CR-Honeynet, a honeypot based defense
mechanism where the CRN passively learns the strategy of the
attacker using stochastic learning, and then place an active
decoy namely honeynode to entice the attacker for jamming
the honeynode transmission. Thus, the attacker gets a false
impression of attacking the highest impacting communication
whereas legitimate SU communications avoid attacks and
reduce attack impact on the CRN. One or multiple SUs act
as honeynode in each transmission period. The SU acting as
honeynode refrains from transmitting its own data packets and
transmits garbage data with specific transmission characteris-
tics. Such transmission characteristics lure the attacker to jam
Honeynode’s transmission. The transmission characteristics
that the attacker aims is learned from the history of attacks. As
an example, if an attacker targets highest transmission power
then the honeynode transmits with highest possible power

2

while all other SUs keep their transmission power lower than
Honeynode’s power.

The evolving nature of the attacker, as well as dynamic and
stochastic nature of the wireless medium, pose several chal-
lenges to the learning mechanism. Suspicious of being trapped,
an attacker may intentionally change its strategy of finding
highest impacting communication. Also, due to erroneous and
stochastic nature of wireless medium, an attacker may err in
sensing CRN’s highest impacting connection. Such error may
result in an attack on different SU communication instead
of the communication with desired/targeted characteristics.
Such circumstances must be taken into account for effective
luring. In this paper, we use statistical monitoring threshold
to decide whether the changes in recent attack pattern is
due to an error in attacker’s sensing or whether the attacker
has changed its attacking strategy. Our proposed stochastic
learning mechanism correctly detects attacker’s strategy with
a probability of 0.958 within 15 iterations and identifies a
change in attacker’s strategy dynamically with 95% confidence
interval within five iterations. The simulation results show that
CR-Honeynet learns attacker’s strategy correctly and adapt
to attacker’s strategy change dynamically which in effect
enhances CRN’s performance regarding packet delivery ratio.
We further developed a state-of-the-art testbed using off-the-
shelf software defined radios. An attacker is developed using
GNURadio that can sense the ongoing communications and
target a particular channel to jam. The CR-Honeynet is built
as a network of five nodes. The setup shows the effectiveness
of the defense mechanism proposed. In summary, the main
contributions of this paper are:
• A novel jamming defense mechanism that uses the intel-

ligence of the attacker for its benefit.
• Stochastic model for learning the attacker’s strategy in a

noisy and transient wireless environment.
• Regime change detection model to detect when an at-

tacker changes its strategy after being suspicious of a
honeynode trap.

• Prototype developed using off-the-shelf hardware to
prove the feasibility of the proposed mechanism.

The rest of the paper proceeds as follows: in Section
II, we discuss the motivation for our work and background
studies. Section III presents our proposed model. In Section IV
we describe our simulator and then analyzes CR-Honeynet’s
performance. The prototype system and the experiments are
described in Section V. Finally Section VI concludes the paper.

II. BACKGROUND STUDIES

A. Jamming attack

In traditional wireless networks, the user of a particular
channel has proprietary access to that channel and thus has
the right to penalize any trespassers. The threat of penalty
can discourage potential attackers. However, if a CRN is
accessing a channel, the SUs are only borrowing the channel,
and they have no grounds from which they can fend off
attackers. Thus, SUs are left vulnerable to malicious jamming
attacks [2]. Jamming can be broadly categorized into two
types [18], [19]. In physical layer jamming, the attacker jams

the channel of communication by sending strong noise or
jamming signals. The data-link / MAC layer jamming targets
several vulnerabilities present in the MAC layer protocol [6],
[20]. Jamming essentially means disrupting communication of
legitimate users.

To illustrate the effect of jamming, we ran an experiment
in our lab. Two computers were configured to communicate
over a WLAN (IEEE 802.11-a) channel 36 (centered at 5.18
GHz). When communicating at full throttle, it achieved end-to-
end throughput of 11 Mbps. We observed the Power Spectral
Density (PSD) over the channel using the Wi-spy spectrum
analyzer [21]. The PSD for healthy communication is shown
in Figure 1a. The plot shows that the transmission is using
a 20 MHz channel as well as some energy leakage to the
neighboring channels. Then we started transmitting a very
narrow band jamming signal of 2MHz from a GNU Radio
[22] enabled USRP board [23]. In the presence of the jamming
signal, the genuine transmission was blocked entirely as can
be viewed in Figure 1b where only the jamming signal is
visible. The attacker is exploiting the vulnerability of IEEE
802.11 MAC that enforces a node to sense the channel before
transmission. When the legitimate transmitter senses that there
is some energy on the channel, it refrains from transmission.
In effect, the attacker successfully jams the channel with
minimal cost. Irrespective of the jamming technique, a target
node suffers a significant amount of data or packet loss and
sometimes completely loses the channel. CRN being a next-
generation intelligent network should incorporate a mechanism
to mitigate, avoid or prevent these attacks.

B. Detection of jamming attacks

Due to the noise in the wireless medium, detection of
jamming is crucial in combating with an attacker. An excellent
survey of different detection mechanisms for jamming based
DoS attack is presented in [8]. It is difficult to detect jamming
based on a single system parameter correctly. Several system
parameters such as received-signal-strength, packet-send-ratio,
packet-delivery-ratio, carrier-sensing-time, etc. are used to
model jamming detection system. Consistency check among
system parameters is used for more efficient detection. Authors
of [24] have classified spectrum usage anomaly detection
algorithms. Through different fusion algorithms, anomalies
in spectrum usage can be detected successfully with higher
efficiency. A cross-layer detection mechanism of anomalous
spectrum attack was proposed in [25], [26] where the network
maps the jammed geographical region using spectrum sensing
reports sent from each SU that are equipped with localization
module.

C. Defense against jamming attacks

Already proposed defense mechanisms against jamming-
based DoS attack can be broadly categorized into spatial
filtering, spatial retreat, mapping jammed region, spread
spectrum, strategic power allocation game, channel hopping,
etc. In spatial filtering approach, mobile nodes use adaptive
beamforming to filter out the signal coming from a jammer
[27], [28]. To defend mobile jammer, defenders use periodic

3

(a) Normal communication (b) Jamming Signal

Fig. 1: PSD for data communication and jamming signal

measurements of the direction of arrival for jamming signal;
and then predict the movement of the jammer in between two
observation intervals to create the optimized beamform to keep
jammers in null regions [29], [30]. In Spatial Retreat [31]
mobile nodes relocate themselves physically to avoid jamming.
The constraint of this approach is that the nodes are required
to be highly mobile which is not realistic for static nodes.
In Mapping Jammed Region [32] approach, the intensely
populated multi-hop CRN avoids routing through the links
that have been affected by jamming. This mechanism fails if
there is only one path and that link is attacked. In Spread
Spectrum [33] technique, low bandwidth data stream uses
higher bandwidth channel to pass the information irrespective
of jamming.

In strategic power allocation technique [34]–[36], the inter-
action between SUs and attacker is modeled as a game where
both players choose optimal power allocation strategies that
maximize their incentive. These game model how the players
should behave where they see incomplete information such as
channel usage, utilities where the players are limited by their
power budget, transmission bandwidth, etc. Several other game
models are proposed [9], [37]–[40] where the jammer’s action
is treated as random decision process and the defender tries
to play with an optimal strategy where it performs different
plans with different probabilities. The underlying assumption
of these games is that the action space of both the players is
known to each other.

In Channel hopping technique, the node which is under
attack migrates its channel of communication upon detection
of jamming [19]. Authors of [41] proposed proactive frequency
hopping where the nodes change its channel of operation irre-
spective of attacks to avoid jamming. The authors considered
a fixed number of channels of the attacker that is known to an
SU, which in reality is difficult to achieve. In [42], the authors
proposed a random jump pattern called Tri-CH that achieves
high-security level. The random jump pattern is a permutation
of the available channels. It guarantees that the transmitter and
receiver will be able to communicate with a specific number
of jumps or within a bounded time.

Majority of the previous works have assumed that the
attacker is naive and does not evolve. Thus, none of these
works have focused on learning the strategy of attacker where

Fig. 2: Time slots in cognitive cycle

the attacker is also dynamic and changes its policy of choosing
the target communication characteristics. In our previous work
[43], [44], we introduced the concept of honeynet in CRN
and presented the benefits of dedicating one SU as honeynode
in a multichannel CRN provided the honeynode is successful
of enticing the attacker. We presented a stochastic model for
honeynode selection which proved that in the case of uniform
traffic, selecting an SU with lowest queue size is optimal
concerning overall system performance. Extending on previous
work, in this paper we present CR-Honeynet, where the CRN
learns the strategy of the attacker and then dedicates one
SU as honeynode. Honeynode acts as the optimal target for
the attacker so that the attacker gets the false satisfaction of
attacking highest impacting SU communication, thus reducing
attack impact on other legitimate communications.

III. PROPOSED MODEL

In this section we describe the system model, its assump-
tions, challenges and the proposed defense mechanism.

A. Assumptions

The general system assumptions are:
i) Network: The network consists of one central controller

and several SUs. The central controller oversight the
channel used by SUs. For an example, consider LTE-U
[45] network. Here the base station communicates with
the cellular phones on licensed spectrum, however, for
higher data rate, the nodes can communicate through
unlicensed bands.

ii) Time slots: To protect PU transmissions, SUs are re-
quired to perform periodic spectrum sensing and evacuate
promptly upon the return of the PU [2]. A time slot
consists of a sensing period followed by a transmission
period as can be seen in Figure 2. SUs scan the wireless
environment for free channels in the sensing period
(Ts). SUs send the spectrum usage report to the central

4

controller for decision. During transmission period (Tt),
an SU transmits packets through its channel dedicated by
a centralized controller.

iii) Jammer: Jammer is itself an SU with the same power of
a regular SU [3].

iv) Attack: We assume that an SU cannot switch its channel
during the transmission period as it is unaware of the
condition of the other channels and can change only on
the next transmission period. Upon being attacked, all
data packets transmitted by the SU are lost [3].

v) Common control channel: The network uses an out-
of-band common control channel for control message
communication between the central controller and the
SUs. This channel is proprietary and the attacker can not
attack due to the heavy penalty associated with attacking
a licensed spectrum [46].

B. Model for attackers

In this paper we consider three types of attacking strategies,
as follows:

I: Static attacker: Attacker targeting a particular channel.
II: Adaptive attacker Targets specific SU transmission

characteristic(s).
III: Random attacker Randomly targets a channel with an

active SU transmission on every time slot.
Attacking strategy of type I and III causes less harm on a

CRN as it does not search for the best communication that
causes the highest impact in CRN. However, an intelligent
and rational attacker of type II can choose any transmission
characteristics to determine the best communication for the
attack that causes the highest impact on the CRN. From
the CRN’s point of view, it is difficult to generate such
characteristic space. Such targeted characteristic space of an
attacker can be learned by two methods: manually by domain
experts or through automatic learning from data obtained
for a long time. For the first step, we are dealing with
the first method and wish to extend our model to perform
the second option and learn an attacker’s possible strategical
viewpoints by automatic learning. We present a generalized
model considering the d possible transmission characteristics
or a combination of transmission characteristics.

C. CR-Honeynet defense mechanism

In CR-Honeynet, the central controller assigns the role of
honeynode to an SU at the beginning of each transmission
period. Figure 3 illustrates this channel allocation based on
time domain (Sensing period not shown). Due to the error
of the attacker or strategy change of the attacker, some
attacks are trapped by honeynode transmission, and others
disrupt legitimate SU communications. We define a parameter,
attractiveness of honeynode (ξ) as the probability that the
honeynode transmission is attacked, conditional on observing
a jamming attack.

When acting as a honeynode, an SU doesn’t transmit its
packets; instead, it queues all its incoming packets and sends
garbage data packets. Honeynode allocation results in more

Fig. 3: A snapshot of CR-Honeynet channel allocation

delay as well as packet drop due to finite buffer sizes for the
chosen SU, both of which are undesirable. If the attractiveness
of the honeynet (ξ) is low, then the CRN will suffer the delay
caused by honeynode allocation as well as the packet drop
with a probability of (1− ξ) due to the attacks on legitimate
SUs other than the one chosen as honeynode. The threshold,
lowest attractiveness of the honeynet (ξ∗) is the value where
the net gain is zero; below ξ∗ the CRN is better off facing the
loss from the attacks than dedicating one SU intending to lure
the attacker.

In accordance to an attacker’s strategies, we define the
following honeynode strategies:

i: If the attack strategy is believed to be of type-I then the
vulnerable channel will be assigned to the honeynode.

ii: If the attack strategy is believed to be of type-II then the
actual target property should be learned and used as a lure
for the honeynode.

iii: If the attack strategy is believed to be of type-III then we
use a special honeynode strategy that delays all but the
honeynode’s transmissions in order to reduce the number
of vulnerable channels to 1.

If there are C available channels, then an attacker must sense
for activity on each of them. Let’s assume switching a channel
incurs a delay of κ (κ = 7.6ms has been measured for Atheros
WiFi [41]). The attacker needs at most Cκ time units to scan
all available channels for activity. Under the special strategy,
we must, therefore, delay all SUs at least Cκ units of time
beyond the sensing period, during which only the honeynode
will transmit. When using the special strategy there is an added
loss or cost of luring as all the other SUs are delayed in their
transmissions, albeit much less than the delay caused to the
chosen honeynode. So this strategy should be avoided by CR-
Honeynet if possible. In contrast, type-III is the only strategy
that increases the attractiveness of honeynet (ξ) to 1.

D. Stochastic model

We assume that at time slot n the attacker’s strategy Sn fol-
lows a random switching process, with consecutive switching
times Tk ∈ N. The model need not be a Hidden Markov Model,
but we assume that the holding times hk = Tk+1−Tk are long

5

enough for learning. We will specify the exact assumptions
later on.

The base model for an attacker with a type-II strategy is
stated now. Because of measurement errors, the attacker may
not always be successful in identifying the correct communi-
cation to attack. Let p1 denote the probability of attacking the
communication with the target characteristics. We will assume
that the number of available channels is larger than d, and use
d of the SUs as learning probes, each with a different target
property. Counting only the time slots when one of the probes
is attacked, the total number of attacks to each of the probes
within n such time slots is modeled as a multinomial random
variable with probabilities:

p1(θ) =
θ

θ + d− 1
; pi(θ) =

1

θ + d− 1
, for i ∈ {2, 3, . . . , d},

(1)
where θ > 1.

The above model corresponds to the situation where probe
k = 1 is targeted and hit with probability p1 < 1. Under
error measurement, any other probe will be attacked with equal
probability pi, i 6= 1. The number θ = p1/pi provides the ratio
between p1 and the rest. For the base model, using the fact
that all other probabilities are equal, θ = (d− 1)p1/(1− p1).

Define the function:

φ(θ, n) =
∑

y∈P(n)

n!

y1! y2! , . . . yd!
p1(θ)

y1

(
p1(θ)

θ

)∑d
i=2 yi

(2)
where the summation is over the set of all possible observa-
tions of a sample of size n of the multinomial with parameters
(eq. 1) where the first component dominates the others, that
is:

P(n) =

{
y ∈ Nd :

d∑
k=1

yi = n, and y1 ≥ yi; i ≥ 2

}
. (3)

It is straightforward to show that this is the exact probability
of correct selection in a sample of size n from the base model
when the maximum likelihood estimator is used. Specifically,
let Yi(n) count the number of attacks to probe i under the
base model, so that: (Y1(n), Y2(n), . . . Y3(n)) ∼ M(p(θ), n),
then the MLE for the parameter pi is simply p̂i(n) = Yi(n)/n
and φ(θ, n) = P(Y1(n) = max(Y1(n), . . . , Yd(n)).

Let α ∈ (0, 1) be a confidence level for statistical signifi-
cance. Then under the base model we can calculate the sample
size required to ensure a probability of correct selection of at
least 1− α:

N∗(θ, d) = min (n : φ(θ, n) ≥ 1− α) . (4)

Bechhofer et al.[47] have tabulated the function φ(θ, n) for
d = 2, 3, 4 using various values of θ and n. For example,
if d = 4, then a sample size of n = 25 ensures a correct
selection with level α = 0.200579 when θ = 2, and with level
α = 0.038559 when θ = 3.

Suppose that honeynet correctly identifies a lure, but p1 <
ξ∗. Clearly, the best it can do here is to use its (correct) guess
for the honeynode, but this will provide at most a probability
p1 that the honeynode will be attacked. Because p1 is below

the threshold, it will not be worth using honeynode in this case
and we use special honeynet strategy similar to type-III. Thus,
such values of ξ∗ provide a threshold value θ∗ = (d−1) ξ∗

(1−ξ∗)
below which it is not worth using honeynode.
Definition: We call a naive attacker one of type II where the
probability of error in measurement is lower than 1− ξ∗, and
we assume that P(hk < N∗(θ∗, d)) = 0.

The above definition says that this type of attack is fairly
accurate (usually p1 ' .85) and also that the strategy is kept
long enough to learn the target probe. Specifically, because
θ ≥ θ∗ for a naive attacker, then N∗(θ, d) ≤ N∗(θ∗, d) if we
use the MLE to identify the target with argmax(Yi(n)) for
n ≈ N∗(θ, d).

E. Learning attacker’s strategy

When the learning mechanism starts, given a confidence
level α, the number n = N∗(θ∗, d) is calculated as a first
estimate for an adequate sample size to detect type II attackers.
When d < C it is possible that error in measurements results in
false attacks to communications that have not been allocated
any lures. Thus, we will focus only on time slots when attacks
happen to lures. According to our model, this “sampled”
process corresponds to the base model for attackers of type-II.
Given n, define τ(n) as the total number of time slots required
to see n attacks to the lures.

During the learning phase, the d different lures for type-II
attacks are assigned to d different communications among the
available ones with uniform probability and no honeynode is
yet allocated. Let Yi(0) = 0; i = 1, . . . , d and define for each
i = 1, . . . , d and the counting processes:

Yi(k) = Yi(k − 1) + 1{i-th lure is attacked at time k} (5)

for k = 1, 2 . . ., where the notation 1{A} stands for the
indicator function of event A (or Dirac delta). In parallel,
define C(1) = c, if c is the first channel to suffer an attack,
and let

C(k+1) = C(k)1{channel c is attacked at time k + 1}. (6)

Because we have allocated the lures randomly among SU
communications, it follows that

P(C(k) = 1 | type II or III) ≤ max

{(
1

d

)k
,

(
1

C

)k}
(7)

Define n0 as the smallest power that makes this probability
smaller than our given confidence level α, that is, when d < C

n0 = dlog(1/α)− log(d)e. (8)

The number of tests to check for type I is thus typically very
small. For example, if α = 0.001, d = 2 then n0 = 7, for
α = 0.005 and d = 6, n0 = 4.

If C(n0) = c, we declare having learned that the attack is
of type I and we identify c as the target channel. From this
point onwards, we place the honeynet in this channel and keep
monitoring. Because attacks of type I are not subject to error
in identifying the channel, as soon as C(k) = 0 we declare a
regime change and re-set the learning phase.

6

Otherwise, if C(n0) = 0 then we keep assigning lures
to channels for as many time slots are required to observe
n = N∗(θ∗, d) attacks to lures. Gelfand et al.[48] provides
a comparison between various estimators and confidence in-
tervals for p̂1. In particular, his findings support the fact that
under attacks of type II the approximate confidence interval
based on the CLT is adequate, even for small to moderate
sample sizes. Following this approximation, if

p̂1 − 1.96

√
p̂1(1− p̂1)

n
≥ ξ∗ (9)

then we declare having learned that the strategy is of type
II and we identify the lure. From this time onwards, we use
the honeynode with that lure and start the monitoring phase.
Notice that by construction, naive attacks are ensured to be
correctly identified with probability at least 1− α.

If (eq. 9) does not hold, then we do not have significant
evidence that our candidate lure will be sufficiently effective.
From this point onwards (whether the attacker is of type II
but with large measurement errors, or of type III) we use the
special honeynode allocation by delaying all other SUs. It is
important to note that while the regular honeynode entails a
delay for the chosen SU, the special strategy delays all of the
rest of the SUs, albeit by a much smaller amount of time.

F. Regime change detection: monitoring phase

Once the learning period is over, the corresponding hon-
eynet strategy is used and honeynet keeps monitoring the
attack counts, keeping track of running window averages. This
is the monitoring phase where the honeynet is sensing for a
possible change in attacker’s strategy, as follows.

If the honeynet is under the assumption of a type I attack,
then it keeps track of C(k), k ≥ n0 until the first time slot
where C(k) = 0. Then it restarts the learning phase.

If the honeynet is under the assumption of a type II naive
attacker then it uses sliding window averages to test for regime
changes. During the monitoring phase the honeynet uses the
detected lure for the honeynode allocation. Honeynet’s first
monitoring test uses a standard control chart for frequencies,
and the second proposed method uses a regression for the
slope of the frequency of attacks. Let p̂1(k); k ≥ n be as in
(eq. 11) re-calculated with increasing observations beyond the
initial horizon n and call

L(k) = p̂1(k)− 3

√
p̂1(k)(1− p̂1(k))

w
. (10)

Given a window of size w time slots, let ξ̃w(k) be the estimate
of p1 (and also of ξ) for time slot k > n using the observations
(Y(d)(k − w), . . . , Y(d)(k)). As soon as ξ̃w(k) < L(k), the
honeynet declares a change of regime and restarts the learning
phase (resetting all counters).

The regression test works very similarly. (To complete,
regression with the window and test for H0 : β < 0, where β
is the slope or method of residuals).

Finally, if the honeynet is operating under the assumption
of a type III attack or a type II attack for small ξ, then
honeynode’s current strategy is the special honeynet strategy

that delays all but the honeynode. The honeynet keeps a
new counter H(k) = H(k − 1) × 1{honeynode is attacked},
initialized at the value 1. As soon as the attack goes to another
channel (H(k) = 0), the honeynet declares that the attacker
is not aiming at random, but it must be targeting now either
a specific channel or a specific property of the transmissions.
Then the honeynet restarts the learning phase.

IV. SIMULATION AND RESULTS

A. Simulator

We coded a tick based simulator [49] using Python for
simulating the CR-Honeynet. In the simulation, we have
considered 20 SUs and 1 attacker which can effectively attack
one SU communication. The CR-Honeynet dedicates 1 SU
as honeynode in each slot. The attacker follows algorithm
1 and the honeynet follows algorithm 2. All SUs generate
packets in accordance with Poisson process and queue them
while in sensing period or when that SU is acting as a
honeynode. During transmission period, SUs that are not
acting as honeynode transmit packets from the queue. Packet
transmission time (Sn) follows uniform distribution of 0.1 - 1.7
ms. A sensing Period (Ts) of 50 ms and a transmission Period
(Tt) of 950 ms has been considered for the cognitive cycle.
We consider attacker has target transmission characteristics
(d) space as 4. From the CRN’s point of view, attractiveness
threshold (ξ∗) is considered as 0.6. Type-I learning horizon
(n0) and Type II learning horizon (N∗(θ∗, d)) are calculated
as 5 and 15 respectively. We run the simulation for 5,000,000
ms simulation time with 100,000 ms as warm-up time 1.

Algorithm 1: Algorithm for attacker

1 if strategy = attack particular channel then
2 scan channel c ∈ C in the initial stage of Tt
3 if SU is active on c then
4 attack on channel c

5 else if strategy = attack transmission characteristics x
then

6 Scan all ci ∈ C at initial stage of Tt
7 attack the channel which have highest x
8 else if strategy = attack randomly then
9 Scan all ci ∈ C at initial stage of Tt

10 attack randomly a channel c where SU is active

B. Learning attacker’s strategy

We plot φ(θ∗, n) (eq. 2) with respect to learning period
(N∗) in Figure 4. We can clearly see that with an increase in
N , confidence level also increases. We have defined earlier,
confidence level for statistical significance (α = 1−φ). From
(eq. 4) we can get the optimal N∗. For our simulation we
have considered ξ∗ = 0.6. We see that N∗ = 15 ensures
correct learning with level α = 0.015 for d = 4. From the

1To obtain reliable steady state results for system staring with empty queue,
a simulator run for warm-up period [49] without recording data. Once the
warm period is over simulator starts gathering data

7

Algorithm 2: Algorithm for CR-Honeynet

1 Calculate n0, N∗ based upon d and ξ∗

2 Reset all counters such as y, n etc.
3 Run initial learning phase for n0 slots
4 if all attack happens on channel c ∈ C then
5 Put honeynet on c in every slot until attack observed

on other channel.
6 Go to step 2
7 else
8 Continue counting for n = N∗(θ∗, d) slots
9 if p̂1 − 1.96

√
p̂1(1− p̂1)/n ≥ ξ∗ then

10 lure = argmax(y)
11 put honeynode with lure on every slot until

ξw(k) < L(k)
12 Go to step 2
13 else
14 Use special honeynet strategy until honeynode is

not attacked. Go to step 2.

0 5 10 15 20 25 30
Number of Slot (N)

0.75

0.80

0.85

0.90

0.95

1.00

φ
(θ
,n

)

d=3
d=4
d=5
d=6

Fig. 4: Confidence level of Learning with pilot simulation

figure we can conclude that for a certain desired confidence
of learning (φ(θ∗, n)), an increase in the number of lured
characteristics (d), results in a decrease in required slots
for learning (N∗). In another way, the more transmission
characteristics or combination of transmission characteristics
an attacker can target, CR-honeynet takes lesser time to learn
with the same confidence.

Figure 5 provides an illustration of a learning phase. In this
scenario, the attacker with type II strategy is aiming for lure 2
(the lure is characteristics of transmission) to attack. Lure 2 is
actually attacked with a probability 0.8. The actual attacks on
the various lures are shown on the upper subplot. The middle
subplot depicts P̂ for the different lures calculated using (eq.

11). The third subplot provides p̂1−1.96
√

p̂1(1−p̂1)
n which can

be taken as a measure of learning. With d = 4 and ξ∗ = 0.6,
the probability of correct selection after N∗ = 15 samples is

Fig. 5: Depiction of Learning while d = 4

Fig. 6: Honeynet Learning phase corresponding to attacker’s
strategy change from I to II and then to III

0.985.

C. Dynamic evolution with change in attacker’s strategy

Figure 6 and 7 provide the results for different experiments,
each of which corresponds to a different sequence of attack
processes {Sn;n = 1, 2, . . .}. The upper subplots provide the
attacker’s strategy. Yellow, green and red colors indicate type-
I, type-II and type-III attacking strategies respectively. Blue
dots indicates the attacker’s aimed transmission characteristics
to find highest impacting communication. Here we have used
4 types of lure, i.e. transmission characteristics (d = 4).

Middle subplots give CR-Honeynet’s observation of p̂ (eq.
11) for different lures. It uses the MLE estimators for the two
highest probabilities:

8

Fig. 7: Honeynet Learning phase corresponding to attacker of
type II and attacker is changing its target lure

p̂1 =
Y(d)(τ(n))

n
; p̂2 =

Y(d−1)(τ(n))

n
, (11)

where the notation (x(1), . . . , x(d)) is the usual notation for
the ordered statistics.

In lower subplots of these 3 figures, we present phases
of Honeynet. Background colors Grey, yellow, green and
red indicate the learning phase, type-I, type-II and type-III
defense strategies respectively. Then we plot the estimation of

CI = p̂1 − 1.96
√

p̂1(1−p̂1)
n in the learning phase. We can see

that with increase in slots, CI is increasing. When the learning
phase is over and honeynet decides which strategy to take, it
change its phase. When it detects a regime change, it enters
to the learning phase again. When it is in type-II honeynet
strategy, the honeynet monitors L(k) and ξ̃w. Honeynet enters
learning phase when ξ̃w ≤ L(k). An approximate test of level
0.05 which decides whether the attack is of type II or III is
to test if T > 0, for the statistics:

T = (p̂1 − p̂2)− 1.96

√
p̂1(1− p̂1) + p̂2(1− p̂2)− p̂1 p̂2

n
.

(12)
If T ≤ 0 then we infer, the attacks are “sufficiently random”

between at least two contenders.
Figure 6 shows how the honeynet learns the change of

strategy of attacker dynamically. We see that, for type-I attack,
honeynet learns in 5 iterations. To distinguish between type II
and III, honeynet takes 15 slots. When the attacker deviates
from type I, honeynet learns it on the next iteration. However,
when the attacker is in type II and changes its strategy,
honeynet takes 2 iterations to detect the change in strategy
of attack.

Figure 7 depicts a scenario where the attack strategy is of
type II. It changes its targeted SU transmission characteristics

Fig. 8: Honeynet Learning phase corresponding to attacker’s
strategy change from II to I and then to III

0 5 10 15 20
Window size(w)

2

4

6

8

10

12

14

16

18

20

Re
gi
m
e
ch
an

ge
 d
et
ec
tio

n
de

la
y

ζ=0.75 ζ=0.85 ζ=0.95

Fig. 9: Regime change detection delay for type II attacker

dynamically. For the first phase, attacker aims characteristics 1
and then 2 and then 3. We can see that for imperfect scanning,
the attack may actually happen on a different lure. Honeynet
identifies the correct strategy and particular type of attack in
15 iterations. We can see that for this particular simulation,
honeynet detect attack strategy change after 3 iterations in the
first case and after 2 iterations in the second one.

Figure 8 depicts a simulation scenario where attacker
changes its type from II to I and then to III. Here, we can
see that honeynet takes 5 iterations to learn that attacker has
changed its strategy from type II to type I. From all 3 plots
we can see that both CI and T gives indication of learning
efficiency.

9

D. Optimal window to detect regime change

When honeynode is placed with the wrong lure, legitimate
communications are disrupted. We see honeynet detects the
regime change very quickly, which decrease the loss. Mainly,
the loss is during the learning phase when CR-Honeynet does
not deploy honeynode. To see how long it takes for the
honeynet to detect the regime change while in type II lure
strategy, we present a comparison to select optimal window
size in fig. 9. An attacker of type-II strategy is attacking a
particular lure with probability ζ. We simulated for 3 different
values of ζ. For every value of ζ and w, the simulation
is run for 100,000 slots to ensure accurate results. In this
simulation, the attacker is changing its targeted transmission
characteristics randomly with mean interval of 100 steps. We
can clearly see that, window size w = 5 provide optimal result
i.e. it can detect regime change very quickly and efficiently.

E. Overall system performance

We now code an Event Driven Simulator to compare the
system performance between using honeynet and not using
honeynet for an infinite buffer CRN. For simplicity, we have
considered 20 SUs and kept ξ = 0.8. We vary average packet
inter-arrival time (λ) to examine system performance with
varying load. We observe that for all values of λ, with CR-
Honeynet the average packet dropping probability is 0.01,
while without honeynet results packet dropping probability of
0.05 . Figure 10a provides the comparison of average queuing
delay for a SU. From the figure, we can conclude that, using
honeynet for lower λ is highly beneficial as packet drop is
minimized. Better packet delivery ratio is achieved at the cost
of higher packet delay. In our future work we shall try to get
an estimation of ξ∗ that can regulate CRN to use honeynode or
not, depending λ and traffic type (elastic, non-elastic, real-time
etc.)

F. Effect of SU sensing error

In CR-Honeynet architecture, multiple SUs transmit over
multiple channels simultaneously during the transmission cy-
cle. After the transmission cycle is over, the defender networks
determine which channel is jammed based on the number of
dropped packets. If a channel observes packet drop during the
transmission cycle while the signal strength on that channel
being high, that channel is flagged to be jammed. Thus all the
jamming effects are successfully determined. Packet drop can
be the result of two incidents: 1) that channel is intentionally
jammed by an attacker or 2) PU of that channel started
transmitting during the transmission cycle. Also if an SU
erroneously detects a channel to be free while the PU is
present, all the packets will be dropped as well. If jamming
is detected on multiple channels, the defender needs to decide
which one is due to the attacker and what kind of bait it
attacked. If we recognize jamming on the presumed decoy
bait that the CR-Honeynet deployed, the defender assumes it
as a success. However, if the attack did not happen on the
bait channel, the defender counts it as the attack happening
on another SU other than the bait. For a defender network

with fewer SUs, the defender is confused most of the time
and restarts the learning phase quickly. For a network with
more SUs, there is a lower number of such confusions, and
as a result, the effect of sensing error reduces.

We simulated the scenario of PU sensing error with varying
number of SUs. Figure 10b provides the obtained throughput
regarding the number of packets successfully transmitted. We
can see if the SUs can sense PU presence without any error,
the throughput is very high. Note that, with an increase in
the number of SUs, the throughput increases but it does not
increase linearly as there will always be packet drop due to
sudden PU arrival during the transmission phase. In addition
to this, SU throughput is also limited by the frequent sensing
phase as well as an SU’s service as a honeynode. When SUs
incur error in sensing the PU presence, the SU’s transmission
will be hampered for the entire transmission cycle. So, the
effective throughput is reduced. We can see that for a lower
number of SUs, they are massively affected by this error.
However, when the number of SUs increases, the effect of
the PU sensing error reduces. Thus for a defender network
with a higher number of SUs, it is always beneficial to use
CR-Honeynet.

G. Comparison with state-of-the art protocols

In this section, we compare the performance of CR-
Honeynet with the state-of-the-art channel hopping based jam-
ming defense techniques namely Tri-CH [42]. The simulation
parameters are kept same as described in the earlier section.
We have used only one adaptive jammer. Figure 10c provides
the actual throughput obtained by a CRN. In case of Tri-
CH, the SUs have to keep hopping channels until it is finally
able to synchronize with its receiver. On the contrary, CR-
Honeynet does not hop channels during a transmission period.
It is true that some packets are lost since an SU is jammed but
it is unable to switch the channel. Overall, the CR-Honeynet
obtains higher throughput than that of TRi-CH.

V. SYSTEM DEVELOPMENT

In this section, we describe the system architecture of the
prototype and present the experimental evaluation. Figure 11
illustrates of our testbed, and for reader’s convenience, a
video demonstration depicting the prototype functionality is
presented in [50]. We designed the testbed with multiple SUs,
a central controller (CC) which would get data from all the
SUs, and an intelligent attacker. The prototype is built using
USRP radios [23], [51], each connected with one laptop. The
spectrum usage is visualized using a spectrum analyzer. This
setup uses one transmitter for each SU to communicate with
the CC and one of the SUs act as the honeynode in each slot.
The CC has a jamming detector, and the SU has a controller
that would allow it to change transmission characteristics
at the beginning of a time slot. Two different attackers are
designed as well. The intelligent attacker listens to ongoing
SU transmissions in the network and jam one channel based
on a target characteristic. The other is a much more simple
which is manually configured to attack specific channels we
choose. Next, we will discuss how each component works,

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Packet Arrival rate (�)

0

50

100

150

200

250

300

Q
u

e
u

in
g

 d
e

la
y

 i
n

 m
il
li
s
e

c
o

n
d

s

without CR-Honeynet

with CR-Honeynet

(a) Overall queuing delay for ξ = 0.8

4 6 8 10 12 14 16 18 20
Number of SUs (N)

6500

7000

7500

8000

8500

9000

T
h
ro
u
g
h
p
u
t
in
 n
u
m
b
e
r
o
f
p
a
ck

e
ts
 r
e
ce

iv
e
d

PU sensing error = 0%
PU sensing error = 5%
PU sensing error = 10%

(b) Overall throughput(ξ = 0.9)

4 6 8 10 12 14 16 18 20
Number of SUs (N)

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

T
h
ro

u
g
h
p
u
t
in

 n
u
m

b
e
r
o
f
p
a
ck

e
ts

 r
e
ce

iv
e
d

CR-Honeynet
Tri-CH

(c) Overall throughput(ξ = 0.9)

Fig. 10: Simulation results for N = 20

Fig. 11: Prototype setup for 4 SU with a central controller.

what it does, how it does it, and finally discuss the evaluation
of the prototype.

A. Central controller (CC) design in GNURadio

The CC in this system is designed first to work with two
channels, and then it is updated to work with four. In this
setup, one of the SUs is designated as the honeynode. CC
monitors the incoming data and the signal strengths for each
channel separately. If it detects an anomaly for a channel
(such as data is not decoded while signal strength is above a
threshold), it raises a jamming flag. If CC raises a flag for SU
other than the honeynode, then it triggers channel switching
between the jammed SU and the honeynode so that the SU
will now be back on a unjammed channel. Through a backup
common control channel, the message is relayed to the SU
so that they can use proper frequencies. If the swapped SU

TABLE I: Channel parameters Parameters

System parameters Variable names Default values
Center Frequency freq 2.44GHz
Number of Channels num c 4
Channel Bandwidth c width 200KHz
Band Pass Filter Low Cutoff low cutoff -70KHz
Band Pass Filter High Cutoff high cutoff 70KHz
Sample Rate samp rate 800KHz
Guard Band guard band 30KHz

still cannot communicate for a significant time, then the CC
will assume the SU is no longer transmitting and swap it
with the honeynode again and leave that SU alone until it
starts receiving data from it. Swapping back and forth like
this also makes the system a little more interference resistant
if interference between channels is not allowing data to get
through on a channel. Now we shall describe the design of
CC in GNURadio.

1) GNURadio blocks for CC: For the initial two SU setup,
the blocks used are a USRP Source, a Message Strobe, a
Jamming Detection/Defense, and two each of the following:
Frequency Xlating FIR Filters, GFSK Demods, Packet De-
coders, File Sinks, Byte Sensors, and UDP Sinks. For the
updated four SU, the blocks used are a USRP Source, a
Message Strobe, a Jamming Detection/Defense and four of
each of the following: Frequency Xlating FIR Filters, GFSK
Demods, Packet Decoders, File Sinks, Byte Sensors, and UDP
Sinks.

2) CC design parameters: There are seven parameters
being used in the CC design as can be seen in Table I. The
center frequency designates which frequency for the USRP
source to listen to. The number of channels is used in multiple
calculations including to determine the overall sampling rate
of the CC. The channel bandwidth is set to designate how wide
each channel is and is used to calculate the overall sampling
rate as well as the center frequency of each channel. The low
and high bandpass filter cutoffs are used by the Frequency
Xlating FIR Filters to provide guard bands for the channels.
The Sample Rate is the overall sampling rate of the entire
flowgraph and is set by the number of channels multiplied by
the channel width. The guard band is used to help determine
the high and low bandpass filter cutoffs.

11

USRP Source

QT GUI Sink

Frequency Xlating FIR Filter GFSK Demod Packet Decoder

Byte Sensor

Frequency Xlating FIR Filter GFSK Demod Packet Decoder

Byte Sensor

Frequency Xlating FIR Filter GFSK Demod Packet Decoder

Byte Sensor

Frequency Xlating FIR Filter GFSK Demod Packet Decoder

Byte Sensor

Jamming Detector/Defender

File Sink

File Sink

File Sink

File Sink

UDP SinkUDP SinkUDP SinkUDP Sink

Message Strobe

Fig. 12: GNURadio Flowgraph of the central controller

3) GNURadio flowgraph for CC design: Figure 12 depicts
a flowgraph of the CC designed in GNURadio for static
scenario. Note that when we introduce dynamic change in
transmission characteristics, we need to code everything in
Python as the static flowgraph cannot change dynamic param-
eter changes for USRPs. The data is received from the USRP
Source as a wideband transmission that is then filtered and
shifted by the Frequency Xlating FIR Filters for each channel
in the network. This shift and filter isolate a single SU’s
data to pass through GFSK demodulation. Once demodulation
is complete, the data gets passed to a Packet Decoder. At
this point, there is no more processing to be done to the
data so it gets sent to the Byte Sensor and the File Sink.
When the Byte Sensor receives bytes it uses the GNURadio
message passing system to let the Jamming Detect/Defense
block know how many bytes it received with a timestamp.
As long as the Byte sensors for the SUs are receiving bytes,
the Jamming Detector/Defense block doesn’t do anything. If
it stops receiving bytes for a certain amount of time, raises a
jamming flag. The UDP Sinks are used as a control channel
between the CC and SUs.

4) Custom Blocks: The two custom blocks that we built
for the CC are the Byte Sensing block and the Jamming
Detection/Defense block. The Byte Sensing block is simple
in design. It has one input which accepted bytes from the
packet decoder and one message output that connected to
the Jamming Detection/Defense. Since the work2, the block
will only work when the Packet Decoder successfully decodes
bytes of data. When it does receive bytes, the block uses
GNURadio’s message passing system to let the Defender block
know what time that channel received bytes and which SU this
sensor is connected to.

We also had to build the Jamming Detector/Defender. This
block takes GNURadio message input probes as input from
the Byte sensor blocks for each SUs. It also has one 64-bit
complex input taken directly from the USRP source. This
block outputs a message output for each SUs Frequency
Xlating Fir Filter and a 32-bit floating point output for each
SU’s UDP sink. The block contains many different variables to
store data about each SU including the time of the last known
byte, whether the SU is jammed, which frequency each SU
is on, and more. The block loops through each SU in its list

2GNURadio has a function, work which is called when data is received at
the input of a block.

TABLE II: SU Parameters

SU parameter Variable name Default value
Center Frequency freq 2.44GH
Sample Rate samp rate 800KH
Guard Band guard band 30KH
Gain gain Varies by SU
Payload Size payload 1024

first checking to see if the SU is the honeynode. If it is not
the honeynode then it checks how long any bytes have been
received from that SU. If it has not received any byte for a
threshold time the defender assumes the SU is jammed and
swaps its frequency with that of the honeynode in an attempt
to unjam the SU. Then if that SU can not communicate for
a longer period, the CC assumes it is off and swaps it with
the honeynode again. For the defender to swap frequencies, it
creates a message with the new frequency and send it to the
Frequency Xlating Fir Filter corresponding to that SU and also
sends the new frequency through the floating point output of
the corresponding SU so it also knows to change. This message
passing through the common control channel ensures proper
rendezvous between the SU and the CC.

5) CC Limitations: The most profound limitation in the
CC is the interference that is sometimes created by the SUs as
they move between channels. This interference can sometimes
cause an SU to stay jammed even after it swaps. A temporary
solution has been found in the form of controlling the gain
of the SU and by having the frequency of the SU swap with
the honeynode again if it persists. This can sometimes put the
SU back into a favorable position where it can get its data
through.

B. Secondary User (SU) design in GNURadio

The SU for this system is designed to get bytecode of a
file, encode, modulate, and filter the data, and then send the
data through the USRP. It is also built to be able to change
its channel of communication dynamically by the transmission
control block. CC sends control messages to the transmission
control blocks of the SUs through UDP to change the channel
of communications.

1) GNURadio blocks for SU design: Each SU includes
a UDP Source, File Source, transmitter Controller, Packet
Encoder, Band Pass Filter, Multiply Constant, QT GUI Sink,
USRP Sink, and QT GUI Range.

2) Parameters for SU design: Table II lists the parameters
used by the SUs. The center frequency is different for each
SU and is the frequency that the USRP is transmitting on.
The sample rate is the bandwidth of the channel. The guard
band determines the high and low cutoffs for the bandpass
filter. The gain is used to set the gain of the USRP which can
be controlled by the user at runtime for testing purposes. The
payload size is used in the UDP source to determine the size
of the UDP packets being sent by the CC.

3) GNURadio flowgraph for an SU: Figure 13 shows the
flowgraph of an SU. The file source block loads the bytecode
of the data to be transmitted which is then passed to the
packet encoder where it is encoded for GFSK modulation.
The baseband signal is passed through a bandpass filter to get

12

Packet Encoder GFSK Mod Band Pass Filter Multiply Constant QT GUI RangeFile Source

QT GUI Sink

USRP Sink

Transmission ControlUDP Source

Fig. 13: GNURadio flowgraph of the SU design

rid of any undesired frequencies. Next the data passes through
a multiply block which is used to help fine tune the signal.
Then it is sent to the USRP for radio transmission. Each SU
also contains a UDP source block which is connected to the
UDP sink blocks located within the CC through the common
control channel. This data is sent to a transmission control
block we built to change to a new frequency determined by
the CC.

4) Custom GNURadio blocks for an SU: The transmission
Control block is designed to take data from a UDP Source.
This data is the new frequency for the SU to switch to if the
CC detects jamming. When it receives this data, it uses the
GNURadio message passing system to send a message to the
USRP to set the new frequency.

5) SU limitations: The limitation is changing frequencies
depends on the connection between the UDP-source SU and
corresponding UDP-sink blocks in the CC retaining their con-
nection. Also when the SU is changing frequency, sometimes
its data will go into a different SUs file sink because it didn’t
switch fast enough.

C. Intelligent attacker design in GNURadio

We design an intelligent attacker with the capability of
sensing the wireless channels and then attacking a channel
based on a target characteristic. The two most prominent
characteristics we tested against are high transmission power
and longest transmission time. In mode11 the attacker would
sense and attack the channel with the highest transmission
power. In mode-2, the attacker jams the channel that had been
transmitting the longest during the sensing time.

1) GNURadio blocks: To build the intelligent attacker we
had to use a USRP Source, Stream to Vector, FFT, Vector To
Stream, Jammer, and USRP Sink.

2) Parameters for attacker: The parameters for intelligent
attacker design are listed in Table III. The center frequency
sets the frequency that the USRP Source is listening to, but it
does not fix the frequency of the USRP sink. This is because
the USRP Source will always listen to 2.44e9GHz whereas
the USRP Sink’s frequency will change each time the attacker
targets a new channel. The number of channels is set so that
the jammer knows how many channels it needs to account for
in the FFT data. The Sampling rate is the overall sampling
rate of the network. The guard band is used to set the high
and low cutoffs for the bandpass filter. This is needed because
we are testing the system with the attacker only being able to
attack a single channel at a time.

3) GNURadio flowgraph for intelligent attacker: The flow-
graph for this attacker can be seen in figure 14. This attacker
takes data from a USRP Source that is set to the same
frequency as the CC’s network. This data is output as a stream
which is then turned to a vector of size 1024 by the stream to

TABLE III: Intelligent attacker design parameters

Parameter Variable Name Default Value
Center Frequency freq 2.44GH
Number of Channels num c 4
Channel Bandwidth c width 200KH
Sample Rate samp rate 800KH
Guard Band guard band 30KH

USRP Source Stream to Vector FFT Sensor/Jammer Band Pass Filter USRP Sink

Fig. 14: Flowgraph of an intelligent attacker.

Channel 0 Channel 1 Channel 2 Channel 3

Highest power channel

Fig. 15: FFT plot of the signal observed by an attacker. If
intelligent attacker targets highest power channel then the SU
transmitting on channel 1 sould be attacked.

vector block. This newly created vector is passed to an FFT
block which performs the transformation and then passes the
data to the Jammer/Sensor. After analyzing the data for a set
amount of time, the Jammer will then beginning outputting
a jamming signal on a specific channel based on the attack
mode of the jammer. This jamming signal is passed through
a bandpass filter and then sent to the USRP Sink for RF
transmission.

4) Custom GNURadio blocks for attacker: Only the jam-
mer/sensor block is created for the intelligent attacker. This
block has one input that accepts 64-bit complex vectors of
size 1024. It also has an output of a stream of 64-bit complex
numbers and a message output that is used to change the
frequency of the USRP. The block starts by taking in a vector
which is the FFT data of the network if it is in the sensing
mode. Then it splits the data based on the number of channels
present in the network. Each segment represents the data on
a specific channel. This the block loops through the segments
and checks the average of that segment against a threshold.
If the average is greater than that threshold then the block
will update the information it has for that specific channel.
Namely the strength of the transmission and how long it has
been on. If the block is in jamming mode then it will use the
data it gathered from sensing and choose the channel which
matches it’s search criteria. Then it outputs the jamming signal
on target channel. The block will jam that channel for a set
amount of time before it goes back into sensing mode and
it repeats the process. In mode-1, the intelligent attacker will
target the SU with the highest transmission power and can be
seen in Figure 15. In mode-2 the intelligent attacker will target
the SU that has the longest transmission time as can be seen

13

0 20 40 60 80 100 120 140
0.0
0.2
0.4
0.6
0.8
1.0

Ch
an

ne
l 0

0 20 40 60 80 100 120 140
0.0
0.2
0.4
0.6
0.8
1.0

Ch
an

ne
l 1

0 20 40 60 80 100 120 140
0.0
0.2
0.4
0.6
0.8
1.0

Ch
an

ne
l 2

0 20 40 60 80 100 120 140
time

0.0
0.2
0.4
0.6
0.8
1.0

Ch
an

ne
l 3

Fig. 16: Actual plot of transmission time on different channels.
If intelligent attacker targets channel with maximum transmis-
sion, in the first time slot channel 0 will be targeted, in the
second time slot channel 3 will be targeted, and in the third
time slot channel 2 will be targeted.

in Figure 16.
5) Attacker’s limitations: The only limitation of this at-

tacker is noise in the environment can give a false positive
that the channel is on. Although this isn’t much of an issue
because the noise only registers for a very short amount of
time and the power is usually really low. This means it usually
won’t change much regarding the Jammer’s sensing time.

D. Manual Attacker Design

The manual attacker is designed mostly as a testing and
debugging tool. It enabled us to test different scenarios while
initially designing the system and it also retained its usefulness
after the system is built to test specific jamming patterns.

1) GNURadio blocks for attacker design: The manual
attacker had by far the simplest flowgraph only using a Signal
Source, Band Pass Filter, USRP Sink, QT GUI Sink, and two
QT GUI Ranges.

2) Parameters for an attacker: There are only three pa-
rameters used by the manual attacker as can be seen in Table
IV. The center frequency is the frequency that the USRP is
transmitting on and can be changed at runtime by the user to
transmit and jam specific frequencies. The sample rate is the
bandwidth of the channel. The guard band is used to determine
the high and low-frequency cutoffs for the bandpass filter. The
gain is used to set the transmission power of the USRP and
can also be changed at runtime to change the strength of the
jamming.

3) GNURadio flowgraph of manual attacker: The flow-
graph is depicted in Figure 17. It starts with a signal source

TABLE IV: Manual Attacker Parameters

Parameter Variable Name Default Value
Center Frequency freq 2.4397GH
Sample Rate samp rate 800KH
Guard Band guard band 30KH
Gain gain Varies by SU

Band Pass Filter QT GUI Range

QT GUI Sink

USRP Sink

QT GUI Range

Signal Source

Fig. 17: Flowgraph of the manual attacker that can be changed
at runtime to attack a specific channel

that outputs a cosine wave. That signal is then sent to a
bandpass filter to remove any undesired frequencies in the
signal. After filtering the signal, it is sent to the USRP for
transmission. While running the user can change the gain and
center frequency of the USRP to jam specific channels are
different strengths.

4) Limitations of manual attacker: The only limitation of
the manual attacker is that it must be manually moved to
attack different channels. On its own, it contains no sensing
or detection capability. This attacker represents one that just
chooses a channel to attack and then jams it.

E. Experiments with prototype

1) Experiments with two SUs: Experimenting with this
system is with just two SUs and one CC. Both SUs have a file
to transmit, but one of them is designated the honeynode. In
this setup, when the CC detects jamming on a non-honeynode
SU, it would swap the frequencies without a problem and the
data would continue to come through. We test this with both
the manual attacker as well as the intelligent attacker and in
both cases when the CC detected jamming the channels would
swap. The only issue encountered with this is the cross-channel
interference between the two SUs. Although most of the time
it would not be much of an issue, sometimes it would cause
no data to come through the non-honeynode SU at all making
the CC think it is no longer transmitting. This stage is just for
testing the initial design, and since it is working, we moved
on to the next part.

2) Experiments with four SUs: Once we got the system
working for two SUs, we moved on to four SUs. In this case
three of them would be actively transmitting, and the fourth
would be the honeynode. Interference is a much bigger issue
in this experiment because there are now two extra SUs to
deal with. To help minimize interference, we increased the
size of the guard bands and updated the defender to swap the
jammed SU with the honeynode. This extra swap would help
get some extra bytes from that SU while each one tried to
stabilize in its new frequency with its new neighbors. With
the issue of interference partially improved, we could begin
testing the system with the attackers.

When testing with the manual attacker, the defender would
place the honeynode where the attacker is and only move
if some interference made another channel seem like it is
being jammed. As the manual attacker is moved to another

14

Fig. 18: Experiment result with 4 lures characteristics

frequency, the honeynode would follow it. After numerous
tests with the manual attacker, we then move on to testing
with the intelligent attacker. When the intelligent attacker is
introduced to the system, it would target either the SU with the
highest transmission power or the longest transmission time.
When the defender detected the presence of jamming on one
of those channels, it would move the honeynode to the jammed
frequency until it detected another being jammed.

F. Experiment results

In the testbed, we have deployed an intelligent attacker
(i.e. type-II). We have set four sets of characteristics based
on transmission power, packet arrival rate, packet length and
packet inter-arrival gap. Now, the attacker chooses target
characteristics and scan through the channel to detect the target
channel. It also changes its strategy dynamically. Figure 7
depicts the experiment results. The attacker chose the lure 1
and kept attaching to that characteristics. The defender places a
honeynode at the interval 15. The attacker changes its strategy
at interval 35 and again in 70. The honeynet’s learning period
is colored gray. The green color means the defender is using
an active decoy. The results can be compared with the results
of the simulation described earlier and clearly support the
effectiveness of the CR-Honeynet.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose CR-Honeynet, a CRN sustenance
mechanism, which exploits the fact that an intelligent and
rational attacker aims for specific transmission characteristics
to gain the highest impact out of jamming. The stochastic
learning model presented in the paper shows that the honeynet
can confidently learn the attacker’s strategy and dynamically

evolve with attacker’s strategy change. The mechanism effi-
ciently lures the attacker towards attacking the active decoy
trap and thus bypassing attacks on legitimate SU communi-
cations. The state-of-the-art testbed developed using off-the-
shelf software defined radios prove the effectiveness of the
mechanism. Currently, the mechanism has a drawback of not
placing active decoy while it is passively learning attacker’s
strategy. In the future, we shall investigate more to improve
the learning mechanism where the honeynet would be able to
predict the attacker’s strategy change and can place an active
decoy to mitigate an attack.

REFERENCES

[1] S. Bhunia, S. Sengupta, and F. Vazquez-Abad, “CR-Honeynet: A Learn-
ing & Decoy Based Sustenance Mechanism against Jamming Attack in
CRN,” in IEEE MILCOM, pp. 1173–1180, 2014.

[2] A. Fragkiadakis, E. Tragos, and I. Askoxylakis, “A survey on security
threats and detection techniques in cognitive radio networks,” IEEE
Communications Surveys Tutorials, vol. 15, no. 1, pp. 428–445, 2013.

[3] S. Bhattacharjee, S. Sengupta, and M. Chatterjee, “Vulnerabilities
in cognitive radio networks: A survey,” Computer Communications,
vol. 36, no. 13, pp. 1387–1398, 2013.

[4] T. C. Clancy and N. Goergen, “Security in cognitive radio networks:
Threats and mitigation,” in IEEE CrownCom, 2008.

[5] T. X. Brown and A. Sethi, “Potential cognitive radio denial-of-service
vulnerabilities and protection countermeasures: A multi-dimensional
analysis and assessment,” Mobile Networks and Applications, vol. 13,
no. 5, pp. 516–532, 2008.

[6] D. Thuente and M. Acharya, “Intelligent jamming in wireless networks
with applications to 802.11 b and other networks,” in MILCOM, 2006.

[7] S. Anand, S. Sengupta, K. Hong, K. Subbalakshmi, R. Chandramouli,
and H. Cam, “Exploiting channel fragmentation and aggregation/ bond-
ing to create security vulnerabilities,” IEEE Transactions on Vehicular
Technology, 2014.

[8] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy, “Denial of service
attacks in wireless networks: The case of jammers,” Communications
Surveys & Tutorials, IEEE, vol. 13, no. 2, pp. 245–257, 2011.

[9] B. Wang, Y. Wu, K. R. Liu, and T. C. Clancy, “An anti-jamming
stochastic game for cognitive radio networks,” Selected Areas in Com-
munications, IEEE Journal on, vol. 29, no. 4, pp. 877–889, 2011.

[10] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” Ad hoc networks, vol. 1, no. 2, pp. 293–
315, 2003.

[11] “GR-Inspector.” https://github.com/gnuradio/gr-inspector.
[12] C. G. Wheeler and D. R. Reising, “Assessment of the Impact of CFO on

RF-DNA Fingerprint Classification Performance,” in IEEE ICNC, 2017.
[13] T. J. Bihl, K. W. Bauer, and M. A. Temple, “Feature selection for

rf fingerprinting with multiple discriminant analysis and using zigbee
device emissions,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, 2016.

[14] R. Klein, M. A. Temple, M. J. Mendenhall, and D. R. Reising,
“Sensitivity analysis of burst detection and rf fingerprinting classification
performance,” in IEEE ICC, 2009.

[15] D. R. Reising, M. A. Temple, and J. A. Jackson, “Authorized and rogue
device discrimination using dimensionally reduced rf-dna fingerprints,”
IEEE Transactions on Information Forensics and Security, vol. 10, no. 6,
pp. 1180–1192, 2015.

[16] P. K. Harmer, D. R. Reising, and M. A. Temple, “Classifier selection
for physical layer security augmentation in cognitive radio networks,”
in IEEE ICC, 2013.

[17] Z. Zhan, M. Xu, and S. Xu, “Characterizing honeypot-captured cyber
attacks: Statistical framework and case study,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 11, pp. 1775–1789, 2013.

[18] S. Misra, S. K. Dhurandher, A. Rayankula, and D. Agrawal, “Using hon-
eynodes for defense against jamming attacks in wireless infrastructure-
based networks,” Computers & electrical engineering, vol. 36, no. 2,
pp. 367–382, 2010.

[19] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and spatial
retreats: defenses against wireless denial of service,” in Proceedings of
the 3rd ACM workshop on Wireless security, pp. 80–89, ACM, 2004.

15

[20] G. Noubir and G. Lin, “Low-power DoS attacks in data wireless
LANs and countermeasures,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 7, no. 3, pp. 29–30, 2003.

[21] “Wi-Spy Spectrum analyzer.” http://www.metageek.net/products/wi-
spy/.

[22] “GNU Radio.” http://gnuradio.org/redmine/projects/gnuradio/wiki.
[23] “Universal Software Radio Peripheral (USRP) Kit.”

https://www.ettus.com/product/details/UN200-KIT.
[24] V. Chatzigiannakis, G. Androulidakis, K. Pelechrinis, S. Papavassiliou,

and V. Maglaris, “Data fusion algorithms for network anomaly detection:
classification and evaluation,” in ICNS, pp. 50–50, IEEE, 2007.

[25] C. Sorrells, L. Qian, and H. Li, “Quickest detection of denial-of-service
attacks in cognitive wireless networks,” in Homeland Security (HST),
2012 IEEE Conference on Technologies for, pp. 580–584, IEEE, 2012.

[26] M. Spuhler, D. Giustiniano, V. Lenders, M. Wilhelm, and J. B. Schmitt,
“Detection of reactive jamming in DSSS-based wireless communica-
tions,” IEEE Transactions on Wireless Communications, vol. 13, no. 3,
2014.

[27] S. Bhunia, V. Behzadan, P. A. Regis, and S. Sengupta, “Adaptive Beam
Nulling in Multihop Ad Hoc Networks Against a Jammer in Motion,”
Computer Networks, vol. 109, pp. 50–66, 2016.

[28] S. Bhunia, V. Behzadan, P. A. Regis, and S. Sengupta, “Performance of
Adaptive Beam Nulling in Multihop Ad-Hoc Networks under Jamming,”
in IEEE CSS, 2015.

[29] S. Bhunia and S. Sengupta, “Distributed Adaptive Beam Nulling to
Mitigate Jamming in 3D UAV Mesh Networks,” in IEEE ICNC, 2017.

[30] S. Bhunia, P. A. Regis, and S. Sengupta, “Distributed adaptive beam
nulling to survive against jamming in 3d uav mesh networks,” Computer
Networks, 2018.

[31] W. Xu, K. Ma, W. Trappe, and Y. Zhang, “Jamming sensor networks:
attack and defense strategies,” IEEE Network, no. 3, pp. 41–47, 2006.

[32] C. Sorrells, P. Potier, L. Qian, and X. Li, “Anomalous spectrum usage
attack detection in cognitive radio wireless networks,” in IEEE HST,
2011.

[33] C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast com-
munication using uncoordinated spread spectrum techniques,” Selected
Areas in Communications, IEEE Journal on, vol. 28, no. 5, pp. 703–715,
2010.

[34] R. El-Bardan, V. S. S. S. Nadendla, S. Brahma, and P. K. Varshney,
“On ARQ-based wireless communication systems in the presence of a
strategic jammer,” in IEEE GlobalSIP, 2014.

[35] R. El-Bardan, S. Brahma, and P. K. Varshney, “Strategic power allocation
with incomplete information in the presence of a jammer,” IEEE
Transactions on Communications, vol. 64, no. 8, pp. 3467–3479, 2016.

[36] R. El-Bardan, V. Sharma, and P. K. Varshney, “Learning equilibria for
power allocation games in cognitive radio networks with a jammer,” in
IEEE GlobalSIP, 2016.

[37] S. Singh and A. Trivedi, “Anti-jamming in cognitive radio networks
using reinforcement learning algorithms,” in Wireless and Optical Com-
munications Networks (WOCN), 2012.

[38] S. Mneimneh, S. Bhunia, F. Vázquez-Abad, and S. Sengupta, “A game-
theoretic and stochastic survivability mechanism against induced attacks
in cognitive radio networks,” Pervasive and Mobile Computing, 2017.

[39] C. Chen, M. Song, C. Xin, and J. Backens, “A game-theoretical anti-
jamming scheme for cognitive radio networks,” IEEE Network, vol. 27,
no. 3, pp. 22–27, 2013.

[40] Y. Gwon, S. Dastangoo, C. Fossa, and H. Kung, “Fast Online Learning
of Antijamming and Jamming Strategies,” in IEEE GLOBECOM, 2015.

[41] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel
hopping to increase 802.11 resilience to jamming attacks,” in IEEE
INFOCOM, 2007.

[42] G.-Y. Chang, S.-Y. Wang, and Y.-X. Liu, “A jamming-resistant channel
hopping scheme for cognitive radio networks,” IEEE Transactions on
Wireless Communications, 2017.

[43] S. Bhunia, S. Sengupta, and F. Vázquez-Abad, “Performance analysis of
CR-honeynet to prevent jamming attack through stochastic modeling,”
Pervasive and Mobile Computing, vol. 21, pp. 133–149, 2015.

[44] S. Bhunia, X. Su, S. Sengupta, and F. Vázquez-Abad, “Stochastic Model
for Cognitive Radio Networks under Jamming Attacks and Honeypot-
Based Prevention,” in ICDCN, Springer Berlin Heidelberg, 2014.

[45] C. Cano and D. J. Leith, “Coexistence of wifi and lte in unlicensed
bands: A proportional fair allocation scheme,” in Communication Work-
shop (ICCW), 2015 IEEE International Conference on, pp. 2288–2293,
IEEE, 2015.

[46] FCC, “Jammer Enforcement.” https://www.fcc.gov/general/
jammer-enforcement.

[47] R. E. Bechhofer, S. Elmaghraby, and N. Morse, “A single-sample
multiple-decision procedure for selecting the multinomial event which
has the highest probability,” The Annals of Mathematical Statistics,
pp. 102–119, 1959.

[48] A. Gelfand, J. Glaz, L. Kuo, and T.-M. Lee, “Inference for the maximum
cell probability under multinomial sampling,” Naval Research Logistics
(NRL), vol. 39, no. 1, pp. 97–114, 1992.

[49] S. Ross, Simulation. Elsevier Science, 2012.
[50] “Video of CR-Honeynet prototype.” http://sbhunia.me/research/

honeynet/.
[51] S. Bhunia and S. Sengupta, “Implementation of interface agility for

duplex dynamic spectrum access radio using usrp,” in IEEE MILCOM,
2017.

