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Abstract—In this paper, we show that Hybrid Routing and Prophet protocols in Opportunistic Mobile Networks (OMNs) are vulnerable
to the CollusiveHijack attack, in which a malicious attacker, Eve, compromises a set of nodes and lies about their Inter-Contact-Times
(ICTs). Eve claims that her nodes meet more frequently than in reality to hijack the routes of legitimate nodes in OMNs. The
CollusiveHijack attack enables Eve to launch more severe attacks like packet modification, traffic analysis, and incentive seeking
attacks. To identify the CollusiveHijack attack, we propose the Kolmogorov-Smirnov two-sample test to determine whether the statistical
distribution of the packets’ delays follows the derived distribution from the ICTs among the nodes. We propose three techniques to detect
the CollusiveHijack attack, the Path Detection Technique (PDT), the Hop Detection Technique (HDT), and the Early Hop Detection
Technique (EHDT), which trade off compatibility with the Bundle Security Protocol, the detection rate, and the detection latency. We
evaluated our techniques through extensive trace-driven simulations and a proof-of-concept system implementation and show that they
can detect CollusiveHijack attacks with 80.0% to 99.4% detection rates (when Eve hijacks more than 60 packets) while maintaining a low
false positive rate (∼3.6%) and a short detection latency (7-14 hours) for EHDT (75%-85% enhancement compared to PDT and HDT).

F

1 INTRODUCTION

Opportunistic Mobile Networks (OMNs) refer to wire-
less networks in which mobile nodes are intermittently
connected, without stable end-to-end paths. OMNs have
a wide range of applications, e.g., disaster response [1],
[2], battlefield communications, social networks applications
(Firechat and 1am [3] [4]), aerospace [5], railways [6], vehic-
ular networks [7], [8], and IoT-based mobile health networks
[9]. Due to the intermittent connectivity between the nodes
in OMNs, their routing protocols (e.g., Hybrid Routing
(HRP) [10] and Prophet Protocols [11] [12]) adopt the store-
carry-and-forward mechanism to deliver the packets. HRP
and Prophet protocols learn from the nodes’ past contact
history in order to make forwarding decisions. That is, a pair
of nodes in OMNs measures their past contact frequencies
to find the probability of their future contacts. The Inter-
Contact-Time (ICT), which is the time duration between
two contacts between a pair of nodes, is used to measure
the contact frequency and the delivery capability of the
nodes [13] [14]. The ICTs that were extracted from OMNs’
real-world mobility traces [15], [16] show that they might be
at the scale of seconds, minutes, or even days.

In this paper, we show that one major security concern
and research challenge for HRP and Prophet protocols is
their vulnerability to a Route Hijacking attack. In this attack,
that we called CollusiveHijack, a malicious attacker, Eve,
compromises a set of nodes and lies about their ICTs. Eve
claims that her nodes meet more frequently than in reality,
in order to deceive HRP and Prophet protocols. Eve aims
to hijack the packets of the legitimate nodes in OMNs. We
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found that the CollusiveHijack attack can be launched due
to the fact that nodes in OMNs have no way of verifying
whether the claimed ICT between a pair of nodes is true
or false, even if the claimed ICTs are signed. That is, Eve
can successfully launch the CollusiveHijack attack since her
nodes share their private keys and sign their claimed ICTs.
The CollusiveHijack enables Eve to launch more severe
attacks like: a) packet modification attack [17], which enables
Eve to corrupt the contents of the packets, thus enforcing
packet re-transmissions and a decrease in the packet delivery
ratio [18] (i.e., waste of network resources, power, band-
width); b) eavesdropping and traffic analysis attack, which
enables Eve to identify the types of network traffic and apps
of the legitimate nodes [19] [20] in OMNs; c) incentives
seeking attack, that is, if an incentive based mechanism [21]
is employed in OMNs, Eve’s nodes can deliver the hijacked
packets to get more credit and higher reputation.

To the best of our knowledge, a route hijacking attack
has neither been identified nor addressed in OMNs as
most of the previous research in these networks addressed
jamming, blackhole, flood, wormhole, and packet drop-
ping attacks [22]–[28] or focused on authentication, trust-
management, and privacy-preserving [29]–[35]. However,
many approaches have been proposed to detect route hi-
jacking in Internet. Approaches like [36]–[40] collect BGP
updates and routing tables from a public BGP monitoring
infrastructure [41]–[43] and raise alarms when a change in
the origin Autonomous System (AS) of a prefix or a suspi-
cious route is observed. Other approaches [36]–[40] require
network administrators (which are not available in OMNs)
and a list of owned/reached IPs a priori (the nodes in OMNs
do not know their future contacts). The proposed algorithms
in [44] [45] continuously probe Internet to detect whether
any data path changes by leveraging pings/traceroutes tools
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to monitor the connectivity of a prefix and raise an alarm
when significant changes in the reachability of a prefix
(or the paths leading to it) are detected. However, due to
the intermittent connectivity among the nodes in OMNs,
pings/traceroutes tools fail to work. Hence, the Collusive-
Hijack attack is still an open research problem for OMNs.

In order to address the aforementioned research chal-
lenge, we propose to detect the CollusiveHijack attack
by employing the Kolmogorov-Smirnov two-sample test
(KS2ST) [46], a well known test for comparing two statistical
distributions. That is, it measures the distance between the
empirical distribution functions of two samples to determine
whether they have been drawn from the same distribution
or not. The KS2ST has been used by previous works for de-
tecting covert channels, detecting selfish wireless nodes, and
in intrusion detection systems [47]–[50]. We propose three
techniques to detect the CollusiveHijack attack: the Path
Detection Technique (PDT), the Hop Detection Technique
(HDT), and the Early Hop Detection Technique (EHDT).
PDT, HDT, and EHDT offer a trade-off between the com-
patibility with the Bundle Security Protocol (BSP) [51] (if
additional steps are required at the intermediate nodes) and
the detection rate as well as the detection latency against the
CollusiveHijack attack. In PDT, the destination performs a
path-wise detection by collecting the packets’ delays along
the path. The intermediate nodes in the path are authenti-
cated by leveraging the sequential authenticators capability
of BSP. The destination uses the KS2ST to test whether
the statistical distribution of the packets’ delays follows the
statistical distribution that is derived from the claimed ICTs
of the intermediate nodes. In HDT, the destination performs
a hop-wise detection by requiring additional information
from the intermediate nodes (the packets’ receiving times).
The destination leverages the KS2ST to detect whether each
hop in the path is compromised. Our experiments show
that HDT can achieve a higher detection rate against the
CollusiveHijack attack than PDT.

In order to early detect the CollusiveHijack attack at the
intermediate nodes rather than delay the detection until the
packets are received by the destination nodes (as is the case
of both PDT and HDT), we propose the Early Hop Detec-
tion Technique(EHDT), which aims to reduce the detection
latency of the attack. This research is an extension of the pre-
liminary conference version appearing in the Proceedings of
IEEE Conference on Communications and Network Security
(CNS’19) [52] with the following contributions:
• We demonstrate, via implementation and extensive sim-

ulations using two real-world mobility traces, a suc-
cessful CollusiveHijack attack against HRP and Prophet
protocols.

• We present three techniques, the Path Detection Tech-
nique (PDT), the Hop Detection Technique (HDT), and
the Early Hop Detection Technique (EHDT), to detect
the CollusiveHijack attack.

• We demonstrate the feasibility of PDT, HDT, and EHDT
through extensive trace-driven simulations using two
real-world mobility traces and a proof-of-concept sys-

tem implementation.
• We demonstrate the effectiveness of PDT, HDT, and

EHDT by showing that they identify CollusiveHijack
attacks with a high detection rate while maintaining a
low false positive rate and with a short detection latency.

The rest of the paper is organized as follows. In Section 2
we present our network and adversary models. We motivate
our research in Section 3 by launching a successful Collu-
siveHijack attack against HRP and Prophet protocols. The
design of PDT, HDT, and EHDT is presented in Section 4.
We illustrate the experimental setup of our simulation and
implementation in Section 5 before presenting the evaluation
results in Section 6. The security analysis of PDT, HDT, and
EHDT is presented in Section 7. In Section 8, we thoroughly
survey the state-of-the-art and security threats OMNs. Fi-
nally, we conclude our paper in Section 9.

2 NETWORK AND ADVERSARY MODELS

This section presents the network and adversary models.

2.1 Network Model

Fig. 1: Contact frequency for 1 day

We consider an OMN,
as shown in Figure 1,
with nodes that run
HRP or Prophet proto-
col. v1 learns from the
contact records (that are
received via v2) that ei-
ther (v2, v3, v4, v5) or
(v2, v9, v8, v7) can de-
liver v1’s packets to v6.
We assume that it is
possible to achieve a
time synchronization between all OMN’s nodes at the scale
of one second (which is sufficient since the ICTs in OMNs
are at the scale of seconds/minutes). In the following para-
graphs, we present HRP and Prophet in more detail.

Hybrid Routing Protocol (HRP) [10] [53] is a limited
replication-based protocol that relies on the observation that
path delay correlations can impact performance improve-
ments gained from packet replication. HRP captures the
potential correlation between the ICTs for different nodes
and decides how much replication should be used for dif-
ferent network environments. HRP introduces two concepts:
the replication factor and the replication gain. The replication
factor is the total number of data copies created at the
source for a given packet. If Dr is the random variable for
routing delay when replication factor is r, then the replica-
tion gain is E[D1]/E[Dr]. The replication gain captures the
benefit of replication in terms of delay improvement. HRP
demonstrated mathematically and experimentally that the
delay correlation affects the benefit of replication and it is
important to capture it to estimate the replication gain and
make better routing decision. HRP is implemented as a user-
space daemon service [53].

Prophet protocol [11] [12] is an unlimited replication-
based protocol that relies on a probabilistic metric called
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delivery predictability, Ψ ∈ [0, 1]. Ψ is established at each
node indicating the probability of delivering a message to
all other nodes. As shown in Figure 1, when v6 encounters
v5, they exchange their Ψ’s and update them accordingly.
Ψ(v6,v5), which is v6 delivery predictability for v5, is up-
dated according to Ψ(v6,v5) = Ψ(v6,v5)old + (1 - Ψ(v6,v5)old )
× Ψinit. Ψinit ∈ [0,1] is a constant to ensure that nodes that
frequently meet have high Ψ’s. If two nodes do not meet for
a while, their Ψ’s must age. The aging equation for v5 and
v6 is Ψ(v6,v5) = Ψ(v6,v5)old × γTu. γ ∈ [0, 1) is a constant to
decide how large impact the aging should have on Ψ and
Tu is the number of time units that has elapsed since the
last time Ψ was aged. Ψ also has a transitive property, as
shown in Figure 1, which is based on the observation that if
vi frequently encounters vj , and vj frequently encounters vk,
then vk is a good carrier to forward the messages to vi. E.g.,
Ψ(v4,v6) = Ψ(v4,v6)old + (1 - Ψ(v4,v6)old ) × Ψ(v4,v5) × Ψ(v5,v6)

× β. β ∈ [0, 1] is a constant to decide how large impact the
transitivity should have on Ψ. When vi, which has a message
for vk, encounters vj , then, vi replicates its message to vj
only if Ψ(vj ,vk) > Ψ(vi,vk). Prophet protocol is implemented
as a user-space daemon service [54] [55] and is considered
as the most widely used protocols for Opportunistic Mobile
Network (OMN). Recently, many machine learning and con-
textual information based approaches have been proposed to
enhance the routing performance (e.g., packet delivery ratio)
and the energy consumption of Prophet [56]–[62].

In both HRP and Prophet protocols [10]–[12], the ICTs
are exchanged (via small-size control packets) among the
nodes in a broadcasting manner when the nodes encounter
each other. These ICTs are used to make future rout-
ing/forwarding decisions for the large-size data packets.
We assume that HRP and Prophet routing protocols use a
public-key identity-based cryptography. Each node’s private
key is only known by itself to guarantee the authentication
and message integrity. The nodes also use their private keys
to sign the announced ICTs. For example, in Figure 1, once
v1 and v2 encounter each other, they calculate/update and
sign (using their private keys) the ICT between each other
and they also exchange all ICTs information that they had
previously received from other nodes.

2.2 Adversary Model
We assume that the OMN has two types of nodes (honest and
compromised). We also assume that a malicious attacker, Eve,
has control of the compromised nodes that are infected by
malware. Eve’s nodes collusively share each other’s private
keys and lie about their ICTs. For example, in Figure 1, v1

has a packet for v6 and the intermediate nodes (v7, v8, v9),
that are compromised, decrease their ICTs. That is, instead
of informing v1 that v8 encountered v9 one time during the
last day, which is the truth, they claim that they encountered
each other twice during the last day (both of v8 and v9 sign
the claimed/fake ICT). The ICT between v7 and v8 is also
decreased, as shown in Figure 1. In case of HRP, decreasing
the ICTs of (v8, v9) and (v7, v8) improves their Ψ’s to v6 as
HRP uses ICTs to measure nodes’ delivery capabilities (i.e.,
HRP replicates the packets to the nodes with lower ICTs).

In case of Prophet, Eve exploits the transitive and aging
properties by decreasing the ICTs of its nodes to increase
their Ψ’s. As shown in Figure 1, decreasing the ICTs of
(v8, v9) resets Tu to 0 and increases Ψ(v9,v8) due to the
aging property. Due to the transitive property (Ψ(v9,v6) =
Ψ(v9,v6)old + (1 - Ψ(v9,v6)old ) × Ψ(v9,v8) × Ψ(v8,v6) × β),
Ψ(v9,v6) also increases and becomes > Ψ(v2,v6). Hence, v1

forwards its packets to v8 and v9. Based on our adversary
model, we define the CollusiveHijack attack as follows:

Definition 2.1 (CollusiveHijack). In this attack, Eve, compro-
mises a set of nodes in OMNs and lies about their Inter-Contact-
Times(ICTs). Eve claims that the compromised nodes meet more
frequently than in reality (by decreasing their ICTs) to hijack the
data packets’ routes of legitimate nodes in OMNs.

Notice that Eve’s goal is to influence the routing decision
of the legitimate nodes in OMNs to hijack their data packets.
That is, the CollusiveHijack attack does not enable Eve to
hijack the control packets that contain the ICTs information
as these packets are exchanged in a broadcasting manner
in OMNs [10]–[12]. We assume that Eve is not interested in
launching jamming, blackhole, flood, wormhole, or packet
dropping attacks during the ICTs broadcasting phase (or
other phases) in OMNs as these attacks have been addressed
by previous works [22]–[28], [30]–[35].

3 MOTIVATION

We show the impact of CollusiveHijack by conducting two
set of experiments, as described in the following sections.

3.1 Launching CollusiveHijack on a real-world testbed

We deploy the HRP and Prophet’s daemon services [53] [54]
on 11 Asus Eee notebooks that run Ubuntu 14.04 LTS. The
notebooks operate in ad-hoc mode on IEEE 802.11 channel
3 (2.4 GHz). Due to space limitation and for the ease of
testing, we place all notebooks together and emulate a
fully connected multi-hop mesh network by manipulating
firewall configurations. To this end, we connect all notebooks
to a server through Ethernet cable and issue iptables and
ip6tables commands from the server to create different ty-
pologies, as shown in Figure 2(a). In order to create contact
events between the notebooks as it is the case in OMNs,
we conducted a dynamic on-off network experiment. First,
we created the topology shown in Figure 2(b). Second, we
turned each node on and off randomly (according to an
exponential distribution) by issuing iptables and ip6tables
commands with different on-proportion. The expected total
duration for one on-off cycle is set to 60 seconds. We generate
a data flow from v1 to v11 with 1 KB and set its deadline to
300 seconds. We leveraged HRP’s hrptclient and IBR-DTN’s
dtnsend and dtnrecv for the data flow. We used the default
values of β = 0.9 and γ = 0.999 for the Prophet protocol.
The duration of each experiment is 30 minutes including a
warm-up period for 5 minutes. The warm-up period is used
by HRP and Prophet to learn about the contact events and
the ICTs before starting the data flow.
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Fig. 2: (a) Attack implementation testbed. (b) Network topol-
ogy. Routed packets for HRP (c, e, g) and Prophet (d, f, h).

For each experiment, we considered a normal scenario
and an attack scenario. In the attack scenario, we assigned
the same ICTs that were used during the normal scenario
among the honest nodes, however, the ICTs of the compro-
mised nodes are multiplied by 0.5. We intend to show that
the CollusiveHijack can be successfully launched against
HRP and Prophet under diverse network conditions. That
is, by varying the on-proportion ∈ [0.4, 1.0] to emulate the
well-connected mesh network and the sparsely connected
OMN. We tracked the routing paths via tcpdump to find
the number of replicated packets to the compromised nodes
during each experiment. We repeated each experiment 30
times (with different ICTs) and we averaged these 30 runs
per each experiment.

Figures 2(c) and 2(d) show the total number of routed
packets when v2 and v3 are compromised for HRP and
Prophet, respectively. During the attack scenario of these
experiments, the ICT between v2 and v3 is claimed to be 0.5
of the ICT between v2 and v3 during the normal scenario. For
example, if in the normal scenario the average ICT between
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Fig. 3: Routed packets for Prophet using (a) Reality trace. (b)
UCSD trace.

v2 and v3 during the warm-up period is 60 seconds, it is
claimed to be 30 seconds during the attack scenario. As
shown in Figure 2(c), HRP replicates more packets towards
v2 and v3 during the attack scenario. The total number of
hijacked packets by v2 and v3 is decreased while increasing
the on-proportion because HRP decreases the replication
factor when the network becomes more connected [10] [53].
For Prophet, the total number of routed packets via v2 and
v3 increases for the attack scenario compared to the normal
scenario (Figure 2(d)).

We repeated the same experiments above when v2, v3,
and v6 are compromised. During the attack scenario, the
ICTs among (v2-v3) and (v3-v6) are claimed to be 0.5 of the
corresponding ICTs during the normal scenario. As shown
in Figures 2(e) and 2(f), the total number of hijacked packets
by v2, v3, v6 are higher compared to the experiments when
only v2 and v3 are compromised for HRP and Prophet.
We also repeated the experiments when v2, v3, v6, and
v9 are compromised (they fake the ICTs of (v2-v3), (v3-v6),
and (v3-v9) to be 0.5 of the corresponding ICTs during the
normal scenario). Similar to the above conclusion, when Eve
compromises more nodes, she is able hijack more packets.
The total number of hijacked packets in Figures 2(g) and 2(h)
increases compared to the total number of hijacked packets
in Figures 2(e) and 2(f), respectively.

3.2 CollusiveHijack in the ONE simulator
We conducted trace-driven simulations in the ONE simula-
tor [63] using the Reality [15] and the UCSD [16] real-world
mobility traces. For the Reality trace, which consists of 97
users from MIT students, faculty and staff members with
Bluetooth connection events over nine months, we set the
duration of each experiment to 5 weeks including a warm-
up period for 1 week. The 97 nodes run Prophet protocol [12]
with β = 0.9 and γ = 0.999. After the warm-up period (dur-
ing the second week), we randomly generated 100 messages,
each with size = 1KB and deadline = 10 days, between the
nodes with id ∈ [1, 50]. For each experiment, we considered
two scenarios, a normal scenario and an attack scenario.
During the normal scenario, the nodes do not fake their ICTs.
However, during the attack scenario, we randomly choose
nodes from the set of nodes with id ∈ [51, 97] and fake
their ICTs during the warm-up period. Then, we compared
the total number of routed packets during the normal and
attack scenarios while varying the number of compromised
nodes from 2 to 4 and the lying factor from 2 to 8. The



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. *, NO. *, MONTH YEAR 5

lying factor reflects the ratio that the compromised nodes
fake their ICTs by (i.e., ICTfaked = ICToriginal

lying factor ). We repeated
each experiment 100 times and we averaged these 100 runs
per each experiment. Figure 3(a) shows the total number of
routed packets for two, three, and four compromised nodes
compared with the normal scenarios (i.e., when the nodes
are not compromised). As shown in this figure, the total
number of hijacked packets increases while increasing the
number of the compromised nodes and their lying factor.

For the UCSD [16] trace, which consists of 275 PDA
users from University of California - San Diego with Wi-
Fi connection events over eleven weeks, after the first week
of warm-up period, we randomly generated 100 messages,
each with size = 1KB and deadline = 10 days, between the
nodes with id ∈ [1, 150]. For each experiment, during the
normal scenario, the nodes do not fake their ICTs. However,
during the attack scenario, we randomly choose nodes from
the set of nodes with id ∈ [151, 275] and fake their ICTs
during the warm-up period. Then, we compared the total
number of routed packets during the normal and attack
scenarios while varying the number of compromised nodes
from 2 to 4 and the lying factor from 2 to 8. Similar to the
conclusions of the Reality trace’s experiments above, for the
UCSD trace, the total number of hijacked packets increases
when the attacker compromises more nodes and when the
lying factor increases, as shown in Figure 3(b).

4 COLLUSIVEHIJACK DETECTION

In this section, we present the KS2ST and the design of PDT,
HDT, and EHDT.

4.1 The Kolmogorov-Smirnov two-sample test (KS2ST)
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Fig. 4: OMN contact
graph

We represent the OMN by an
undirected graph G = (V,E),
where V is a set of nodes and
E is a set of links, as shown in
Figure 4. The link between any
two nodes, vi and vj in V , is
denoted by ei,j . If 1/λi,j is the
ICT between vi and vj , then, the
link weight of ei,j is defined as
the contact frequency (i.e., λi,j),
as shown in Figure 4. If vi never
meets vj , then ei,j will not be in E. Accordingly, any two
connected nodes in G should have at least one contact.
Message forwarding from vi to vj can be accomplished
during the contact event. If Di,j , ICTi,j represent the link
delay and the ICT between two uncorrelated nodes vi and
vj in V , respectively, then:

P [Di,j ≤ d] = 1
E[ICTi,j]

∫ d
0 (1− P [ICTi,j ≤ z])dz and

E[Di,j ] = E[ICTi,j ]
2 +

σ2(ICTi,j)
2E[ICTi,j ]

[13], where σ2(ICTi,j) is
the variance of ICTi,j .

Previous research [10] [13] [14] show that the probability
density function (pdf) of the ICTi,j between vi and vj
follows the exponential distribution (i.e., λi,je−λi,jt). We also
validated that, using the Reality [15] and the UCSD [16]

traces, and found that the pdfs of all ICTs among the users in
these traces follow the exponential distribution. Accordingly,
we can assume that E[Di,j ] = E[ICTi,j ].

If we assume that Pvi,vj = {vi, v1, v2, .., vη−1, vj} repre-
sents a path between vi and vj in G, where vx is the xth
relay node and η is the number of hops. Then, the path
delay consists of links delays that are independently and
exponentially distributed and pdf of Pvi,vj delay:

= λi,1e
−λi,1t + λ1,2e

−λ1,2t + ..+ λη−1,je
−λη−1,jt

, which follows

∼ Hypo(λi,1, λ1,2, .., λη−1,j)

with mean = 1/[λi,1 + λ1,2 + .. + λη−1,j ] and variance =
1/[λ2

i,1 + λ2
1,2 + ..+ λ2

η−1,j ] [64].
The KS2ST is a well known non-parametric goodness-

of-fit test [46]. This test measures the distance between the
empirical cumulative distribution functions (CDFs) of two
samples a = {a}ni=1 and b = {b}mi=1 to determine whether
they have been drawn from the same distribution or not.
The KS test, KS.test(a, b), for {a}ni=1 and {b}mi=1 samples is
defined as:

Da,b = sup
x∈a∪b

|Fa(x)−Fb(x)|, where sup is the supremum

function and Fa, Fb are the empirical CDFs.
Fa(x) = 1

n

∑n
i=1 I{ai≤x} and Fb(x) = 1

m

∑m
i=1 I{bi≤x},

where I{ai≤x} is the indicator function that has the value 1
if ai ≤ x, and 0 otherwise (same for I{bi≤x}).

The null hypothesis of the two samples KS test (i.e., the
samples are drawn from the same distribution) is rejected at
significance level of α ∈ (0, 1] if:

Da,b > c(α) ×
√

n+m
nm , where c(α) =

√
− 1

2 ln(α2 ) and n,
m are the sizes of a and b samples, respectively.

In our design we use α = 0.05. Accordingly, we reject the
null hypothesis if the p− value [65] of the KS2ST is < 0.05.

4.2 Path Detection Technique (PDT)

Before presenting the details of PDT, we present the steps at
each node when it routes a packet, as shown in Algorithm 1.
Note: the steps shown in oval-boxes are for HDT and EHDT
that we present in Sections 4.3 and 4.4, respectively. When a
packet is available at the sender’s buffer, the sender inserts
the packet’s creation time (PCT) and Sender Id into the
packet header. The sender also signs the inserted PCT and
Sender Id (lines 2-3 of Algorithm 1). Then, the sender waits
until the next hop is available to forward the packet (lines 4
and 7 of Algorithm 1). When any node receives a packet
to be routed, it verifies the signed Id of the previous hop
using its public key (line 10 of Algorithm 1). When the next
hop is available, the carrier node inserts its Carrier Id into
the packet header and signs it before forwarding the packet
(lines 12 and 15 of Algorithm 1). The aforementioned steps
can be done by including the nodes’ payload integrity blocks
in the packets (pages 24-25 of BSP [51]).

PDT is a detection-based protocol that runs by the
destination nodes in OMNs. The pseudo code of PDT is
presented in Algorithm 2. When the destination receives a
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Algorithm 1 Steps at each node for PDT, HDT, and EHDT

1: if Sender then
2: Packet Creation Time (PCT ) = current time()
3: Insert&SignPrivK (PCT , Sender Id)→ Packet Header

(PH)
4: Wait until Next hop is available
5:

�� ��Packet Receiving Time (PRT ) = current time()

6:
�� ��Insert&SignPrivK (PRT )→ Packet Header (PH)

7: Forward the Packet
8: else if Carrier then
9: if Packet received then

10: VerifyPrevHopPubK (PrevHop Id,
�� ��PRT )

11: Wait until Next hop is available
12: Insert&SignPrivK (Carrier Id)→ Packet Header (PH)
13:

�� ��Packet Receiving Time (PRT ) = current time()

14:
�� ��Insert&SignPrivK (PRT )→ Packet Header (PH)

15: Forward the Packet

Algorithm 2 PDT at the destination nodes

1: for each received Packet via a Path with η hops do
2: Packet delay (Pd) = current time() - PCT
3: Path = get path(PH) = {vi, v1, v2, .., vη−1, vj}
4: for the Sender and each Carrier in Path do
5: VerifySenderPubK (Sender Id)
6: VerifyCarrierPubK (Carrier Id)
7: Save Pd for Path
8: for k received Packets via a Path with η hops do
9: < Pd1, Pd2, .., Pdk > = get packet delays(Path)

10: < λ1, λ2, .., λη > = get λ’s(Path)
11: rejectnull hypoehsis = 0
12: for j = 1 to numtests = 10000 do
13: < ˆPd1, ˆPd2, .., ˆPd10k > = getrand(Hypo(λ1, λ2, .., λη))
14: p-value = KS.test(< Pd1, Pd2, .., Pdk >,< ˆPd1, ˆPd2,

.., ˆPd10k >)
15: if p-value < 0.05 then
16: rejectnull hypoehsis = rejectnull hypoehsis + 1
17: if (rejectnull hypoehsis/numtests) > 0.05 then
18: Path is compromised
19: else
20: Path is not-compromised

packet, it calculates the packet’s delay and finds its path. The
destination verifies the inserted Ids into the packet header
using the sender and carrier nodes’ public keys (lines 2-
6 of Algorithm 2). For all received packets via the same
path, e.g., Pvi,vj = {vi, v1, v2, .., vη−1, vj}, the destination vj ,
stores the packets’ delays (line 7 of Algorithm 2) and finds
the contact frequencies of Pvi,vj (i.e., λi,1, λ1,2, .., λη−1,j).
These contact frequencies are announced to all nodes in the
OMN and used by HRP and Prophet to make replication
decisions. vj employs the KS2ST to determine whether the
delays of the received packets match the summation of the
announced/claimed links’ delays of Pvi,vj (that follows ∼
Hypo(λi,1, λ1,2, .., λη−1,j). In the following paragraph, we
present the steps of PDT through an example.

We assume that v1 in Figure 4 sent k packets with
delays = < Pd1, Pd2, .., Pdk > to v9 via Pv1,v9 =
{v1, v2, v3, v6, v9} path that has the following contact fre-
quencies: < λ1,2, λ2,3, λ3,6, λ6,9 >. Once v9 collects the
packets’ delays and contact frequencies (lines 9-10 in Al-

gorithm 2), it repeats the following process 10,000 times.
v9 draws a random sample, with size = 10×k, < ˆPd1,

ˆPd2, .., ˆPd10k > from Hypo(λ1,2, λ2,3, λ3,6, λ6,9), and
performs a KS2ST between the received packets delays and
the drawn sample (lines 13-14 of Algorithm 2). If the resulted
p-value of the KS2ST is less than α = 0.05, v9 increases
the rejectnull hypoehsis counter. This counter keeps track of
the number of times the null hypothesis is rejected. After
repeating the KS2ST 10,000 times (with different random
samples), if the ratio of the number of times that the null
hypothesis is rejected is > 5%, then v9 labels Pv1,v9 as a
compromised path. Otherwise, Pv1,v9 is labeled as a not-
compromised path (lines 17-20 of Algorithm 2).

4.3 Hop Detection Technique (HDT)
HDT is a detection-based protocol that runs by the destina-
tion nodes in OMNs. HDT is based on the idea that collecting
the packets’ receiving times (PRTs) at the intermediate nodes
enhances the destination node detection capability against
the CollusiveHijack attack. That is, instead of labeling the
whole path as compromised, as the case of PDT, HDT aims
to pinpoint the lying hops and accordingly the compromised
nodes in the OMN. However, HDT requires additional steps
to be performed by the intermediate nodes apart from the
steps accomplished by BSP [51], as shown in oval-boxes of
Algorithm 1. When the next hop is available for the sender or
the intermediate nodes, they have to insert the PRT into the
packet header and sign the inserted PRT before delivering
the packet to the next hop, as shown in lines 5-6 and 13-
14 of Algorithm 1. Moreover, when an intermediate node,
e.g., vi, receives a packet, it verifies whether the PRT (that
has been signed by the previous hop) matches its time.
Also, vi verifies the signature of the previous hop using
the PrevHopPubK (line 10 of Algorithm 1). Notice that if
we ignore the links’ propagation and transmission delays
(relatively small compared to ICTs in OMNs), the signed
time by the previous hop should equal the PRT at vi.

The pseudo code of HDT is shown in Algorithm 3. To
illustrate how HDT works, we present its steps using the
same example we used in Section 4.2 (node v1, in Figure 4,
sent k packets to node v9 via Pv1,v9 = {v1, v2, v3, v6, v9}).
Once v9 receives a packet from v6, it verifies the PRT and
the Id of v6 using v6’s public key, as shown in line 2 of
Algorithm 3. Afterwards, v9 gets the path of the received
packet and verifies the Ids, PCT, and PRT’s of v1, v2, v3, and
v6 using their public keys (lines 3-6 of Algorithm 3).

Once v9 collects the packets’ delays for all intermediate
hops, it builds the packet receiving times matrix, PRTnodes,
as shown in line 8 of Algorithm 3. PRTnodes is a [k×(η+1)]
matrix that contains the creation and receiving times for the
k packets that have been routed via a path with η hops. The
(k × 5) PRTnodes that is built by v9 is shown in Figure 5.
Notice that PCTx,y represents the creation time of the xth
packet at node y and PRTx,y represents the receiving time
of the xth packet at node y. By subtracting each ith column
from the ith + 1 column in PRTnodes, v9 builds the Dhops,
an (k × η) = (k × 4) matrix that contains the hops’ delays
of Pv1,v9 (lines 9-11 of Algorithm 3). Notice that Dx,(y,w)
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Algorithm 3 HDT at the destination nodes

1: for each received Packet via a Path with η hops do
2: VerifyPrevHopPubK (PrevHop Id, PRT )
3: Path = get path(PH) = {vi, v1, v2, .., vη−1, vj}
4: for the Sender and each Carrier in Path do
5: VerifySenderPubK (Sender Id, PCTSender Id)
6: VerifyCarrierPubK (Carrier Id, PRTCarrier Id)
7: for k received Packets via a Path with η hops do

8: PRTnodes ←

PCT1,vi PRT1,v1 .. PRT1,vj

PCT2,vi PRT2,v1 .. PRT1,vj

.. .. .. ..
PCTk,vi PRTk,v1 .. PRT1,vj︸ ︷︷ ︸

η+1

k

9: for each coli in PRTnodes do
10: Dhops[coli] = PRTnodes[coli+1] - PRTnodes[coli]

11: Dhops =

D1,(vi,v1) D1,(v1,v2) .. D1,(vη−1,vj)

D2,(vi,v1) D2,(v1,v2) .. D2,(vη−1,vj)

.. .. .. ..
Dk,(vi,v1) Dk,(v1,v2) .. Dk,(vη−1,vj)︸ ︷︷ ︸

η

k

12: for each coli in Dhops do
13: < D1, D2, .., Dk > = transpose(coli)
14: < λi > = get λ(Linki)
15: rejectnull hypoehsis = 0
16: for j = 1 to numtests = 10000 do
17: < D̂1, D̂2, .., ˆD10k > = getrand(Hypo(λi))
18: p-value = KS.test(< D1, D2, .., Dk >,< D̂1, D̂2, ..,

ˆD10k >)
19: if p-value < 0.05 then
20: rejectnull hypoehsis = rejectnull hypoehsis + 1
21: if (rejectnull hypoehsis/numtests) > 0.05 then
22: Source Node in Hop i is compromised
23: else
24: Hop i is not-compromised

Fig. 5: PRTnodes and Dhops built by v9

represents the delay of the xth packet at y©←→w© hop. The
(k × 4) Dhops that is built by v9 is shown in Figure 5.
Then, v9 performs the same detection steps as the PDT
algorithm by leveraging the KS2ST. However, since the hops’
delays are calculated by v9 (i.e., the columns of Dhops), HDT
performs a hop-wise detection for Pv1,v9 . Consequently, v9

can label each of the source nodes in the intermediate hops,
[(v1, v2), (v2, v3), (v3, v6), (v6, v9)], as a compromised or not-
compromised node (lines 12-24 of Algorithm 3).

4.4 Early Hop Detection Technique (EHDT)

EHDT aims to early detect the CollusiveHijack attack at
the intermediate nodes that carry the packets instead of
delaying the detection until the packets are received by the
destination nodes (as is the case of HDT). EHDT requires the
additional steps that are shown in oval-boxes of Algorithm 1,
in which the sender and the intermediate nodes insert and
sign the PRTs before delivering the packets to the next hop.

The intermediate nodes leverage the aforementioned PRTs
of all packets that are routed across them to early detect the
compromised nodes. The pseudo code of EHDT is presented
in Algorithm 4. In order to illustrate how EHDT works, let’s
assume that in addition to the example that we presented in
Section 4.3 in which v1, in Figure 4, sent k packets to v9 via
Pv1,v9 = {v1, v2, v3, v6, v9}, also, v4 sent m packets to v6 via
Pv4,v6 = {v4, v1, v2, v3, v6}. In the following paragraph, we
present how EHDT works on v3.

Once v3 receives a packet from v2, it verifies the PRT
and the Id of v2 using v2’s public key, as shown in line 2 of
Algorithm 4. Afterwards, v3 gets the last hop of the received
packet and verifies the Ids, PCT, and PRT’s of v1 and v2

using their public keys (lines 3-5 of Algorithm 4). Notice
that for vz in the vx©←→vy©←→vz© path, get last hop(PH)
function returns the headers of the packets that have been
routed via vx©←→vy© link. In line 4 of Algorithm 4, vz verifies
either the PCT or PRT of vx based on whether vx is the
source or the carrier node of the packet, respectively. In our
example, v3 verifies the PCT’s of the k packets that have
been sent from v1 to v9 via Pv1,v9 and the PRT’s of the
m packets that have been sent from v4 to v6 via Pv4,v6 . In
the next step, v3 collects the k + m packets’ delays for the
v1©←→v2© hop and builds the packet receiving times matrix,
PRTnodes, as shown in lines 6-7 of Algorithm 4. PRTnodes
is a [(k + m) × (2)] matrix that contains the creation and
receiving times for the k and m packets, respectively, that
have been routed via {v1, v2} link. By subtracting the first
column from the second column in PRTnodes, v3 builds the
Dhops, an [(k + m) × 1] vector that contains the link delay
of v1©←→v2© (lines 8-9 of Algorithm 4). Then, v3 performs the
same detection steps as the HDT algorithm by leveraging the
KS2ST and labels the source node, v1, in the v1©←→v2© hop,
as either a compromised or not-compromised node (lines
10-21 of Algorithm 4). Notice that {v2, v3} link is also shared
amongst Pv1,v9 and Pv4,v6 paths. Hence, the k andm packets
that are delivered via {v2, v3} can be leveraged by v6 to
detect the CollusiveHijack attack even though these packets
belong to two different paths (i.e., this is not the case for HDT
since the detection is only accomplished at the destination
nodes). Accordingly, EHDT enhances the detection latency
of CollusiveHijack attack, as we will illustrate in Section 6.

5 IMPLEMENTATION AND EXPERIMENTAL SETUP

We implemented PDT, HDT, and EHDT using R statistical
language [66] on Asus Eee notebooks (shown in Figure 2(a)).
The notebooks run Ubuntu 14.04 LTS and have Intel(R)
Atom(TM) CPU operating at 1.6 GHz and 1GB RAM. Our
R code is executed at the destination nodes for both PDT
and HDT and at the intermediate nodes for EHDT by the
C++ user-space daemon services of HRP and Prophet pro-
tocols [53] [54]. We leveraged the Rcpp package [67] for the
seamless integration of R and C++. We enabled BSP [51] for
HRP and Prophet daemon services. For the cryptographic
sign and verify operations, we leveraged the Pairing-Based
Cryptography (PBC) library [68] that implements the Hess
identity-based signatures [69]. The PBC implementation uses
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Algorithm 4 EHDT at the intermediate nodes

1: for each received Packet via a Link do
2: VerifyPrevHopPubK (PrevHop Id, PRT )
3: Link = get last hop(PH) = {vx, vy}
4: VerifyvxPubK (vx Id, PCTvx Id/PRTvx Id)
5: VerifyvyPubK (vy Id, PRTvy Id)
6: for k+m received Packets via Link do

7: PRTnodes ←

PCT1,vx PRT1,vy

PCT2,vx PRT2,vy

PCT3,vx PRT3,vy

.. ..
PCTk,vx PRTk,vy
PRTk+1,vx PRTk+1,vy

PRTk+2,vx PRTk+2,vy

PRTk+3,vx PRTk+3,vy

.. ..
PRTk+m,vx PRTk+m,vy︸ ︷︷ ︸

2


k+m

8: Dhops[col1] = PRTnodes[col2] - PRTnodes[col1]

9: Dhops =

D1,(vx,vy)

D2,(vx,vy)

..
Dk+m,(vx,vy)︸ ︷︷ ︸

1

k+m

10: < D1, D2, .., Dk > = transpose(col1)
11: < λi > = get λ(Link)
12: rejectnull hypoehsis = 0
13: for j = 1 to numtests = 10000 do
14: < D̂1, D̂2, .., ˆD10(k+m) > = getrand(Hypo(λi))
15: p-value = KS.test(< D1, D2, .., Dk+m >,< D̂1, D̂2, ..,

ˆD10(k+m) >)
16: if p-value < 0.05 then
17: rejectnull hypoehsis = rejectnull hypoehsis + 1
18: if (rejectnull hypoehsis/numtests) > 0.05 then
19: vx in {vx, vy} is compromised
20: else
21: {vx, vy} is not-compromised

a 160-bit elliptic curve group with 512-bit keys. In the follow-
ing paragraphs, we describe our experiments.

1) Experiments in the ONE simulator: we extracted the
ICTs and the number of hops from the experiments that we
conducted in Section 3.2 in the ONE simulator [63] using
the Reality [15] and UCSD [16] mobility traces. We aim to
investigate the performance of PDT, HDT and EHDT for var-
ious scenarios. Hence, we performed different experiments
by varying the ratio of the compromised links in different
paths (with 4, 5, and 6 hops). The ratio of the compromised
links in our experiments are: (1) 16.6%( 1

6 ). (2) 20%( 1
5 ). (3)

25%( 1
4 ). (4) 33.3%( 2

6 ). (5) 40%( 2
5 ). (6) 50%( 3

6 ). (7) 60%( 3
5 ).

We also varied the lying factor (illustrated in Section 3.2) of
the compromised links (from 2 to 8) and the number of the
received packets, k, at the destination from 20 to 100.
2) Experiments on Asus notebooks testbed: we repeated
the four experiments against HRP and Prophet on the
testbed that are shown in Figure 2(a) for 0.4 and 0.9 on-
off ratios, respectively. We generated 100 data packets (each
with a deadline = 300 seconds) from v1 to v11 and we varied
the number of compromised nodes from 2 to 4. The lying
factor for these experiments is 2. We leveraged the HRP
implementation [53] and Prophet implementation [54] to

collect the ICTs among the nodes. The HRP implementation
uses Optimized Link State Routing (OLSR) [70] for topology
maintenance by invoking olsrd [71], an OLSR implemen-
tation, and fetches topology information from it. We used
hrptclient [53] and IBR-DTN’s dtnsend and dtnrecv [54] for the
data flow for HRP and Prophet, respectively. We measured
the packet’s delay at the destination nodes for both PDT and
HDT and at the intermediate nodes for EHDT.
We evaluated PDT, HDT, and EHDT in two aspects:

1) Quantifying the overhead of PDT, HDT, and EHDT
using the following metrics:

a) Packet Size Overhead: additonal data sizepacket size , which mea-
sures the overhead of adding the node’s Id, PCT, and
PRT into the packets.

b) Execution Time Overhead: the required time to exe-
cute the sign and verify operations.

2) Evaluating the performance of PDT, HDT and EHDT
using the following metrics:

a) Detection Rate: the ability of PDT, HDT and EHDT
to detect the attempts of the CollusiveHijack attacker
(true positive rate).

b) False Positive Rate: the rate of claiming a legitimate
path/link as a compromised one.

c) Execution Time (sec): the execution time of KS2ST at
either the destination nodes for PDT and HDT and at
the intermediate nodes for EHDT.

d) Detection Latency (days or hours): the required time
to collect 20, 40, 60, 80, and 100 packets at the des-
tination nodes for both PDT and HDT and at the
intermediate nodes for EHDT.

6 PERFORMANCE EVALUATION

In this section, we present the overhead of PDT, HDT, and
EHDT as well as their performance evaluations.

6.1 Quantifying the Overhead of PDT, HDT, and EHDT
In PDT, HDT and EHDT, the sender adds its Id and PCT
(each is 4B) into the packet’s header and each intermediate
node adds its Id (4B). Also, in both of HDT and EHDT,
each intermediate node adds its PRTs (4B). The signature
field of the Hess identity-based scheme is 64B. Hence, the
packet size overhead of PDT in bytes for the Pvi,vj =
{vi, v1, v2, .., vη−1, vj} path is 68η + 4. For HDT and EHDT,
the packet size overhead for Pvi,vj is 72η. For a 10-hop path
with an IPv4 packet size (i.e., 64KB), the packet size overhead
for PDT is ∼1.04% and ∼1.09% for both of HDT and EHDT,
respectively, which are relatively small. In order to calculate
the execution time of the sign and verify operations of the
Hess identity-based scheme [69], we averaged 10,000 mea-
surements of these operations on one Asus Eee notebooks
and found that the execution time of the sign and verify
operations are 118 msec and 42 msec, respectively.

6.2 Performance Evaluation of PDT, HDT, and EHDT
Evaluation in the ONE simulator using Reality trace. We
conducted the first experiment on a path with η = 6 hops in-
cluding one compromised hop. We performed the following
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Fig. 6: PDT’s Detection Rate for Reality trace when the ratio of
the compromised links: (a) 16.6%(1

6
). (b) 20%(1

5
). (c) 25%(1

4
).

(d) 33%(2
6
). (e) 40%(2

5
). (f) 50%(3

6
). (g) 60%(3

5
). (h) HDT and

EHDT’s Detection Rate.

steps. First, we extracted 1,000 different paths with 6 hops
from the trace-driven 100 experiments that we conducted
in Section 3.2. Second, we extracted the ICTs among the
nodes in these paths and collected the packets’ delays at
the destination nodes. Third, we randomly picked one hop
and varied its lying factor from 2 to 8. Fourth, we counted
the number of times the destination, which runs the PDT
algorithm, was able to detect the CollusiveHijack attack after
receiving 20, 40, 60, 80, and 100 packets. Fifth, we averaged
the 1,000 runs for each lying factor and k value.

The PDT’s detection rate for the first experiment is shown
in Figure 6(a). The detection rate increases when the two
compromised nodes increase their lying factor and when
the total number of the received packets at the destination
increases. We illustrated in Figures 3(a) and 3(b) that it
is attractive for the compromised nodes to increase their
lying factor to hijack more packets. However, increasing the
number of hijacked packets enhances the PDT’s detection
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Fig. 7: False Positive Rate for (a) Reality trace of PDT (η = 4,
5, 6 hops) and of HDT and EHDT (η = 1 hop). (b) UCSD trace
of PDT (η = 4, 5, 6 hops) and of HDT and EHDT (η = 1 hop).

capability. The PDT’s detection rates for the first experiment
when the destination receives 100 packets are: 85.4%, 96.5%,
98.8%, 99.5%, 99.7%, 99.7%, 99.8% for 2, 3, 4, 5, 6, 7, 8 lying
factors, respectively, as shown in Figure 6(a).

We repeated the five steps mentioned above for a higher
ratio of compromised links in the path. In the second exper-
iment, we had a path with η = 5 hops including one com-
promised hop. As it is clear in Figure 6(b), we can draw the
same conclusions as from Figure 6(a). The PDT’s detection
rate increases when the compromised nodes increase their
lying factor and when the destination receives more packets.
The aforementioned conclusions can be also observed for the
remaining five experiments that are shown in Figures 6(c)-
6(g). Moreover, if we compare the PDT’s detection rate of
all figures, we observe that while Eve increases the ratio of
the compromised links, the PDT’s detection rate increases.
Figure 7(a) presents the false positive rate for PDT when η =
4, 5, and 6 hops. The false positive rate for all experiments is
< 3.6%, which is relatively small.

Since HDT and EHDT perform a hop-wise detection
against the CollusiveHijack attack, they have the same detec-
tion rate, which is presented for 1-hop for different k values
in Figure 6(h). As it is clear in Figure 6(h), HDT and EHDT’s
detection rates are > 98% for all lying factors when k >
40. Hence, we recommend to leverage either HDT or EHDT
to effectively detect the CollusiveHijack attack despite it’s
overhead and incompatibility with BSP [51]. Moreover, HDT
and EHDT have the same false positive rates (i.e., on 1-hop),
which are relatively small (i.e., < 3.0%), as we presented in
Figure 7(a) (i.e., when η=1).

The execution time of PDT is presented in Figure 8(a).
PDT’s execution time increases linearly and remains rela-
tively short (< 2.2 seconds) while increasing k and η (i.e., the
total number of received packets and the number of hops,
respectively). For HDT, the execution time at the destination
node when η = 1, 2, 3, 4, 5, or 6 increases linearly from 1.2 to
11.5 seconds while increasing k, as presented in Figure 8(b).
The execution time when η = 1 in Figure 8(b) also represents
EHDT’s execution time since EHDT is a 1-hop detection
algorithm that is run by the intermediate nodes. That is,
EHDT’s execution time = HDT’s execution time when η = 1.

For the detection latency, we calculated the average time
needed to receive 20, 40, 60, 80, and 100 packets for PDT,
HDT, and EHDT using the Reality trace. Since the detection
of the CollusiveHijack attack for both PDT and HDT is
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Fig. 8: Execution Time of (a) PDT. (b) HDT when η = 1, 2, 3, 4,
5, or 6 and EHDT when η = 1.
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Fig. 9: Detection Latency for different number of hops and
packets using Reality trace for (a) PDT and HDT. (b) EHDT.

accomplished at the destination nodes, they both incur the
same detection latency value for the same number of packets
and hops. As presented in Figure 9(a), the detection latencies
for different number of packets (i.e., 20, 40, 60, 80, and
100 packets) for different number of hops (i.e., 4, 5, 6, 7,
and 8 hops) for both PDT and HDT varies between 3 to 4
days, which are relatively acceptable in OMNs. However,
for EHDT, since the intermediate nodes in OMNs perform
a hop-wise detection, the detection latencies for 20, 40, 60,
80, and 100 packets on 1-hop are ∼14 hours, as presented in
Figure 9(b). That is, EHDT enhances the detection latencies
∼85% compared to PDT and HDT and enables the nodes to
detect the CollusiveHijack attack faster than the case of PDT
and HDT. That’s why we recommend to leverage EHDT to
early detect the CollusiveHijack attack in OMNs.

Evaluation in the ONE simulator using UCSD trace.
We calculated the PDT, HDT, and EHDT’s detection rates
for UCSD trace with the same ratio of compromised hops,
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Fig. 10: PDT’s Detection Rate for UCSD trace when the ratio
of the compromised links: (a) 16.6%(1
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). (b) 20%(1
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). (e) 40%(2
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).

(h) HDT and EHDT’s Detection Rate.

lying factors, and received packets at the destination node,
as we did for the Reality trace above. The detection rates for
PDT are presented in Figures 10(a), 10(b), 10(c), 10(d), 10(e),
10(f), and 10(g). The detection rates for HDT and EHDT are
presented in 10(h). We obtain the same conclusions from
the aforementioned figures as from the experiments with
the Reality trace above. That is, the PDT’s detection rate
increases when Eve increases the ratio of the compromised
links and/or the lying factors, as well as when the desti-
nation receives more packets. Similarly, HDT and EHDT’s
detection rates increase when Eve increases the lying factors
and when the destination node receives more packets. We
also calculated the false positive rates for PDT, HDT, and
EHDT using UCSD trace and found that their false positive
rates are relatively small, as presented in Figure 7(b).

We also calculated the detection latencies for PDT, HDT,
and EHDT using the UCSD trace. Similar to the conclu-
sions that we derived using the Reality trace above, EHDT
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Fig. 11: Detection Latency for different number of hops and
packets using UCSD trace for (a) PDT and HDT. (b) EHDT.

enhances the detection latencies of CollusiveHijack attack
compared to PDT and HDT. That is, the detection latencies
for PDT and HDT for 20, 40, 60, 80, and 100 packets for 4, 5,
6, 7, and 8 hops are 1.2 to 2.6 days, which are reduced to 7
to 9 hours for the case of EHDT (i.e., ∼ 75% to 85% enhance-
ment), as shown in Figures 11(a) and 11(b), respectively.

System evaluation on Asus notebooks testbed. Fig-
ures 12(a) and 12(b) show the detection rate of PDT for
the HRP experiments that we conducted on the testbed in
Figure 2(a) using 0.4 and 0.9 on-off ratios. As is clear in
these figures, the detection rate increases when the total
number of received packets at v11 increases and when the
number of compromised nodes increases from 2 to 4. When
v11 receives 60 packets, the PDT detection rate is > 88.0%.
We also derived the same conclusions for the detection rate
of PDT for the Prophet experiments on the testbed, as shown
in Figures 12(c) and 12(d). For both HDT and EHDT, the
detection rate against the CollusiveHijack attack for these
experiments for both HRP and Prophet is always > 98.0%
when k > 40. Moreover, the false positive rates of PDT,
HDT, and EHDT decreases when increasing the number of
compromised nodes and the number of received packets,
k, at the destination nodes, as presented in Figures 13(a)
and 13(b) for the HRP and Prophet experiments, respectively.

7 SECURITY ANALYSIS

In this section, we provide a security analysis and discuss
different security attacks that might be launched by Eve.

1) Fake Ids attack against PDT. Eve might pre-
tend that two or more of her nodes have the same
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Fig. 12: PDT’s Detection Rate on Asus notebooks testbed: for
HRP using (a) 0.4 and (b) 0.9 on-off ratios and for Prophet
using (c) 0.4 and (d) 0.9 on-off ratios.
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Fig. 13: PDT, HDT, and EHDT ’s False Positive Rate on Asus
notebooks testbed for (a) HRP and (b) Prophet, using 0.4 and
0.9 on-off ratios.

Id to not be detected by PDT. Without loss of gen-
erality, if we assume that v2 and v3 are compromised

in Ps,d = s©
λs,v1←−−→v1©

λv1,v2←−−−→v2©
λv2,v3←−−−→v3©

λv3,v4←−−−→v4©
λv4,d←−−→ d©,

then v3 pretends to be v2 (i.e., Eve aims to hide v3

identity). In this case, the packets’ delays at d follow
Hypo(λs,v1 , λv1,v2 , λv2,v3 , λv3,v4 , λv4,d). However, when d
runs PDT, the random samples (line 13 of Algorithm 2)
are drawn from Hypo(λs,v1 , λv1,v2 , λv2,v4 , λv4,d). In order to
check whether PDT is able to detect fake Ids attacks, we
repeated the first and second steps of the experiments in
the ONE simulator (in Section 6.2) for η = 5, 6, and 7 hops
for both Reality and UCSD traces. For the third step, we
randomly picked two adjacent nodes and launched a fake
Ids attack by pretending they have the same Id. Then, we
averaged the number of times that the destination, which
runs PDT, was able to detect the fake Ids attack for different
number of received packets, k. As presented in Figures 14(a)
and 14(b), the PDT detection rate is > 96.0% when k > 60
for both Reality and UCSD traces. Hence, if Eve launches
the fake Ids attack, one of her nodes will be detected (v2 in
Ps,d example above). We also calculated the PDT’s detection
rates against fake Ids attack for 3 compromised nodes (all
have same Id) and found that it is > 99.0% when k > 40.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. *, NO. *, MONTH YEAR 12

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20  40  60  80  100

D
e

te
c
ti
o

n
 R

a
te

k

η=5

η=6

η=7

(a)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20  40  60  80  100

D
e

te
c
ti
o

n
 R

a
te

k

η=5

η=6

η=7

(b)

Fig. 14: (a) PDT Detection Rate Against Fake Ids Attack for a)
Reality trace. b) UCSD trace

2) Fake PRTs attack against HDT and EHDT.
Eve’s nodes might fake their PRTs in order to
not be detected by HDT and EHDT. For example,

in Ps,d = s©
λs,v1←−−→
τ1

v1©
λv1,v2←−−−→
τ2

v2©
λv2,v3←−−−→
τ3

v3©
λv3,v4←−−−→
τ4

v4©
λv4,d←−−→
τ5

d©
path, where τ ’s are the links delays, if s sends a packet
at τ0, the PCT and PRTs for this packet at Ps,d path =
[τ0,

∑1
i=0 τi,

∑2
i=0 τi,

∑3
i=0 τi,

∑4
i=0 τi,

∑5
i=0 τi]. The afore-

mentioned PCT and PRTs are respectively signed by
[(s), (s, v1), (v1, v2), (v2, v3), (v3, v4), (v4, d)], as presented in
lines 3, 6, and 14 of Algorithm 1.

Without loss of generality, if Eve compromises both of
v2 and v3 and fakes their contact frequencies to 2 × λv2,v3 ,
she is also able to fake the PRT at v3 to τ3

2 in order to not

be detected by HDT and EHDT on the v2©
2×λv2,v3←−−−−−→

τ3
2

v3© hop.

That is, Eve fakes the PRT at v3 to match her claimed contact
frequency, 2 × λv2,v3 . However, in this case, the destination
node, d, in case of HDT or v4 in case of EHDT are able to
detect the source node, v3, of v3©

λv3,v4←−−−→
τ3
2 +τ4

v4© as a compromised

node, as shown in line 22 of Algorithms 3 and line 19 of
Algorithm 4, respectively. That is, the packets’ delays at this
hop, τ32 + τ4, do not match its announced contact frequency,
λv3,v4 . Accordingly, if Eve compromises n adjacent nodes,
v1, v2, .., vn, .., d in a path, she is able to launch fake PRTs
attack by faking the PRTs among v1, v2, .., vn−1 nodes, how-
ever, the last compromised node by Eve, vn, will be detected
either by the ultimate destination node, d, in case of HDT or
by the first non-compromised node, vn+1, in case of EHDT.

3) False positive rate for dynamic ICTs. We analyzed the
impact of dynamic scenarios in OMNs on the false positive
rates of PDT, HDT, and EHDT. That is, when the ICTs are
dynamic and frequently changing over time (e.g., due to
high-mobility of nodes). We repeated the same experiments
steps that were presented at the beginning of Section 6.2
for both Reality and UCSD traces. However, instead of
randomly extracting 1,000 paths during the first step, we
performed the following steps to select 1,000 dynamic paths
(the paths that have dynamic ICTs amongst their nodes).
First, we calculated the Standard Deviation (STDEV) values
of the ICTs amongst all pairs of nodes for both traces, as
shown in Figures 15(a) and 16(a). The figures represent the
bar graphs of all STDEV values of ICTs (sorted ascendingly).
We disregarded all pair of nodes if the STDEV of its nodes’
ICTs is 0.0. Second, we determined Sdyn, a set of pairs of
nodes that contains the top 75 percentile of the STDEV’s

1702 Pairs of Nodes0

100

200

300

400

500

ST
DE

V 
of
 IC

Ts
 (m

in
ut
es
)

(a)
426 Pairs of Nodes0

100

200

300

400

500

ST
DE

V 
of
 IC

Ts
 (m

in
ut
es
)

(b)

Fig. 15: STDEV of ICTs for Reality trace for (a) All pairs of
nodes [0.008, 506.3] minutes. (b) Upper quartile (STDEV of
ICT ≥ 75th percentile) [47.6, 506.3] minutes.
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Fig. 16: STDEV of ICTs for UCSD trace for (a) All pairs of
nodes [0.006, 178.1] minutes. (b) Upper quartile (STDEV of
ICT ≥ 75th percentile) [6.2, 178.1] minutes.

for both traces, as shown in Figures 15(b) and 16(b). Third,
we selected 1,000 dynamic paths such that all their nodes
∈ Sdyn and calculated the false positive rates of PDT, HDT,
and EHDT. As shown in Figures 17(a) and 17(b), the false
positive rates increase when the ICTs are dynamic and
change frequently in OMNs. However, as HDT and EHDT
perform hop-wise detection, they incur less impact on their
false positive rates (compared to PDT).

4) Robustness against short ICTs. We assumed in Sec-
tion 2.1 that it is sufficient for PDT, HDT, and EHDT to
maintain a scale of one second time synchronization between
OMNs nodes (the ICTs in OMNs are usually at the scale
of seconds/minutes). In this section, we aim to evaluate
the robustness of our approaches against shorter ICTs and
analyze their impact on the detection rates. We repeated
the same experiments steps that were presented at the be-
ginning of Section 6.2 for both Reality and UCSD traces.
However, instead of randomly extracting 1,000 paths during
the first step, we performed the following steps to select
1,000 paths with the shortest ICTs. Specifically, the paths
where their nodes have to be timely-synchronized with the
tightest/minimum thresholds. First, we calculated the aver-
age values of the ICTs amongst all pairs of nodes for both
traces, as shown in Figures 18(a) and 19(a) (the bar graphs
of average ICTs values sorted ascendingly). Second, we
determined SshortICTs, a set of pairs of nodes that contains
the bottom 5 percentile of ICTs for both traces (Figures 18(b)
and 19(b)). The shortest ICTs for both traces are 92.0 and
0.96 seconds, which validate our assumption about the scale
of ICTs. Third, we selected 1,000 paths such that all their
nodes ∈ SshortICTs and calculated the detection rates of
PDT (when the ratio of the compromised links = 16.6%( 1

6 )),
HDT, and EHDT. As shown in Figures 20(a), 20(b), 21(a),
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Fig. 17: False Positive Rate for dynamic ICTs scenarios for (a)
Reality trace of PDT (η = 4, 5, 6 hops) and of HDT and EHDT
(η = 1 hop). (b) UCSD trace of PDT (η = 4, 5, 6 hops) and of
HDT and EHDT (η = 1 hop).
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Fig. 18: Average ICTs for Reality trace for (a) All pairs of
nodes [1.5, 742.6] minutes. (b) Pairs of nodes with ICT ≤ 5th

percentile [92.0, 327.5] sec.

and 21(b), the detection rates have not crucially degraded
and still comparable to the detection rates shown in Fig-
ures 6(a), 6(h), 10(a), and 10(h), respectively.

We also evaluated the impact of short ICTs on the detec-
tion rates of PDT, HDT, and EHDT on our Asus notebooks
testbed by repeating the same experiments steps that we
presented in Section 3.1. However, for the second step, we
set the on-off ratios to 1.0 (theoretically represent fully-
connected OMN with ICT= 0.0 seconds) and calculated the
detection rates of PDT for HRP and Prophet protocols. As
shown in Figures 22(a) and 22(b), the detection rates slightly
decrease compared to Figures 12(a), 12(b), 12(c), and 12(d)
for 0.4 and 0.9 on-off ratios, respectively. However, the
detection rates still increase while increasing the number of
compromised links and received packets (≥ 90% for k ≥ 80).

5) Feasibility of recovering the compromised nodes’
private keys. We assumed in Section 2.2 that Eve is able
to compromise the victim nodes’ private keys. We aim here
to briefly discuss the feasibility of our assumption. Some
recent works discussed the task of recovering the private
keys of RSA and Elliptic Curve Digital Signature Algorithms
(ECDSA) [72], [73]. It’s shown in [74], [75] that the private
keys of RSA can be recovered from noisy key bits with
erasures and errors and by using special partial information.
Other approaches [76]–[78] recover the RSA private keys
from a TLS session, by factorizing the widely used RSA mod-
uli (i.e., passive RSA key recovery), or by abusing translation
look-aside buffers (TLBs) information. For ECDSA, Hidden
Number Problem (HNP) [73] was used in recovering the
ECDSA private keys in many attacks against biased/leaked
nonces by utilizing side channels such as timing [79], [80]
or cache attacks [81]–[83]. Moreover, by using information
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Fig. 19: Average ICTs for UCSD trace for (a) All pairs of
nodes [0.016, 163.4] minutes. (b) Pairs of nodes with ICT ≤
5th percentile [0.96, 64.6] sec.
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Fig. 20: Detection Rate for paths with ICTs ≤ 5th percentile for
Reality trace for: (a) PDT’s when the ratio of the compromised
links 16.6%(1

6
). (b) HDT and EHDT.

about nonce distribution [84] or fault injection [85].

8 STATE OF THE ART

Previous works on the security threats in OMNs focused
on jamming, blackhole, flood, wormhole, and packet drop-
ping attacks as well as on authenticating the nodes, trust-
management, and privacy-preserving [22]–[35]. In [22], a
statistical-based jamming attack detection approach was
proposed by leveraging the collected statistical measures
from the relay nodes and a prescribed packet delivery ratio
threshold. The adversary in the flood attack floods junk
data into the network in order to deplete or overuse the
limited network resources. The nodes in [25] employs rate
limiting to defend against flood attacks. That is, each node
has limits for the total number of packets and replicas
that it can generate in each time interval. The adversary
in the wormhole attack records the packets at one location
and tunnels them to another colluding node to corrupt the
topology views of the network. In order to address the
wormhole attack, a detection mechanism is proposed [26] to
reduce nodes’ transmission range for a short time to detect
the presence of a forbidden topology structure that is caused
by a wormhole attack. In the packet dropping attack, the
adversary intentionally drops all or part of the received
packets. A machine learning method based on utilizing
classifiers to improve routing and detect the blackhole attack
was proposed in [23]. The nodes in [24] [27] exchange signed
contact records, based in which the next contact nodes can
detect if the attacker has dropped any packet. In [28], a
packet dropping is detected and traced back based on the
Merkle tree. Indeed, none of the aforementioned works
address the route hijacking attack in OMNs. However, most
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Fig. 21: Detection Rate for paths with ICTs ≤ 5th percentile for
UCSD trace for: (a) PDT’s when the ratio of the compromised
links 16.6%(1

6
). (b) HDT and EHDT.
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Fig. 22: PDT’s Detection Rate on Asus notebooks testbed
using 1.0 on-off ratio for: (a) HRP (b) Prophet.

of route hijacking attacks that have been addressed by recent
research are in Internet. Each Autonomous System (AS)
in Internet manages a number of networks, which can be
expressed as IP prefixes. ASes use BGP to advertise their IP
prefixes and establish inter-domain routes in Internet. BGP
is a distributed protocol, lacking authentication of routes.
Hence, a malicious AS can claim to own a prefix or sub-
prefix that belongs to another AS causing redirection of
routes from that AS to the attacker.

BGP hijacking detection approaches can be classified into
four categories. Control-plane approaches [36]–[40] collect BGP
updates or routing tables from a distributed set of public
BGP monitoring infrastructure and route collectors such
as [41]–[43], and raise alarms when a change in the origin-
AS of a prefix, or a suspicious route is observed. PHAS and
Cyclops [38] [39] are notification systems that alert prefix
owners (i.e., ISPs) when their BGP origin change. The net-
work administrator in ARTEMIS [40] stores a configuration
file that has an up-to-date list of all owned and announced
prefixes. This list is continuously compared with the col-
lected BGP updates from the monitoring services (i.e. [41]–
[43]). Based on the result of the comparison, ARTEMIS can
detect any hijacking event and generate alerts accordingly.
The aforementioned control-plane approaches cannot be
used against the CollusiveHijack attack. Apart from the fact
that there are no network administrators in OMNs, the nodes
cannot create a list of “owned” or reached IP’s a priori (i.e.,
the nodes do not know the future contacts among each
other). Data-plane approaches [44] [45] continuously probe
Internet to detect whether any data path changes. That is,
by using pings/traceroutes to monitor the connectivity of a
prefix and raise an alarm, when significant changes in the
reachability [44] of a prefix or the paths leading to it [45] are

observed. The Listen protocol [86] is a data-plane verification
technique that detects reachability problems in the data
plane by passively probing network and checking whether
the underlying routes to different destinations work. Due to
the intermittent connectivity between the nodes in OMNs,
data-plane approaches fail and cannot be used to detect the
CollusiveHijack attack. Hybrid approaches [87]–[89] combine
control and data plane information to detect the hijacking
attack, however, they cannot detect the CollusiveHijack at-
tack because they still need network administrators [89]
and use monitor tools like pings and traceroutes [88] [87].
Cryptographic approaches [90]–[92] use PKI to ensure the au-
thentication of routing announcements to minimize the risk
of a single non-colluding hijacking (cannot defend against
colluding ASes). S-BGP [92] and Whisper protocol [86] fail
to detect colluding ASes that have a direct link to tunnel
packets/advertisements unless the complete topology of the
network is known and enforced. However, the topology
of OMNs is dynamic. The detection of colluding ASes is
beyond the scope of the BGPsec protocol [90].

Other works focused on authenticating the nodes in
OMNs [32]–[35]. An aggregate signature-based authenti-
cation scheme is proposed in [32] to effectively and effi-
ciently process the exchanged messages amongst the nodes
in OMNs to address the rogue pubic key, forgery, eaves-
dropping, replay, and man-in-the-middle attacks. In [33],
the security features of the NTRU algorithm (i.e., an asym-
metric post-quantum cryptosystem algorithm) are leveraged
to propose an authentication scheme that generates unique
IDs, encryption keys, and decryption keys for the nodes in
OMNs. In [34], a randomized light-weight authentication
protocol that involves node registration and authentication
phases using identity-based encryption (IBE) scheme is pro-
posed. The proposed protocol [34] aims to generate public
keys from publicly available nodes with high trust values
(instead of only generating the keys from a central regis-
tration server). [35] proposes a new protocol that is called
message trust-based secure multipath routing protocol (MT-
SMRP). MT-SMRP aims to route the packets through disjoint
paths in which each of them applies a soft-encryption tech-
nique to prevent packet fabrication attacks in OMNs.

9 CONCLUSIONS AND FUTURE WORKS

We presented three algorithms, PDT, HDT, and EHDT, to
detect the CollusiveHijack attack in OMNs. PDT, HDT, and
EHDT employ the KS2ST and offer a trade-off between the
compatibility with BSP, the detection rate, and the detection
latency against the CollusiveHijack attack. Moreover, EHDT
crucially enhances the detection capabilities against the Col-
lusiveHijack attack by enabling the intermediate nodes in
OMNs to detect the compromised nodes before the packets’
destination nodes (as is the case of PDT and HDT). Our eval-
uation results show that the proposed algorithms are able to
identify the CollusiveHijack attack with ∼80% and 99.4%
detection rates, while maintaining ∼3.6% false positive rate,
and with short detection latency (7-14 hours) for EHDT.

In our future work, we plan to investigate the capability
of the attacker, Eve, to fake the ICTs in order to launch a
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Denial-of-Service (DoS) in OMNs. That is, when Eve lies
about her nodes’ ICTs with the goal of avoiding receiv-
ing/routing the data packets of the legitimate nodes in
OMNs by claiming that her nodes meet less frequently than
in reality. Eve aims to deceive HRP and Prophet protocols
and to prevent the data packets to be delivered to the
legitimate nodes in OMNs. To the best of our knowledge,
the aforementioned DoS attack has neither been identified
nor addressed in OMNs as most of the previous research
addressed flood or packet dropping DoS attacks as well as
the selfish nodes in OMNs [93]–[95].

APPENDIX

MATHEMATICAL ANALYSIS
We provide mathematical argument and analysis to

demonstrate the guarantees of the detection capabilities
of PDT, HDT, and EHDT that leverage the Kolmogorov-
Smirnov two-sample test (KS2ST). We prove that when the
random samples (i.e., the packets’ delays in our case) are
in fact coming from the corresponding hypo-exponential
distribution, there is no difference detected by the KS2ST.
Subsequently, it is shown that when the random samples
are from different hypo-exponential distributions and in the
presence of large number of samples, then, the difference
will be detected.

We denote, F0 : The hypo-exponential distribution with
parameters λi,1, λ1,2, . . . , λη−1,j . Suppose that x1, x2, . . . , xn
are the random samples with n = 20, 40, 60, 80, and 100. The
empirical distribution of x1, x2, . . . , xn is denoted as F̂n(.)
and is defined by:

F̂n(x) =
1

n

n∑
i=1

I[xi,∞)(x),

where IS(.) is the indicator function for the set S . The
following result establishes that when the size of the random
sample is sufficiently large, the sampling distribution of
the random sample converges to the data generating hypo-
exponential distribution.

Theorem 1. ||F̂n − F0||∞ = supx∈R|F̂n(x)− F0(x)| a.s.−−→ 0.

In the following, we sketch the proof using the results
from [96].

Proof. Given ε > 0, there exists a partition of R, −∞ = x0 <
x1 < . . . < xk =∞ such that for x ∈ (xi−1, xi)

F̂n(x)− F0(x) ≤ lim
x↑xi

F̂n(x)− lim
x↑xi

F0(x) + ε,

and

F̂n(x)− F0(x) ≥ lim
x↓xi−1

F̂n(x)− lim
x↓xi−1

F0(x)− ε.

Now, since F̂n(x)
a.s.−−→ F (x), this implies that for a

given ε > 0 and x ∈ (xi−1, xi), there exists an integer
N such that for all n ≥ N , |F̂n(x) − F (x)| < 2ε i.e.,
F̂n(x) converges uniformly to F (x) with probability one.
This uniform convergence implies that

Pr( lim
n→∞

sup
x∈R
|F̂n(x)− F0(x)| = 0) = 1,

or equivalently
||F̂n − F0||∞

a.s.−−→ 0.

The above result suggests that the test statistics

Dn = sup
x
|F̂n(x)− F0(x)|

will be useful in detecting the differences in distribution
between the random sample and the corresponding hypo-
exponential distribution. The distribution of Dn does not
depend on F and hence is non-parametric. Accordingly, the
exact analytical form can not be obtained; as such, various
approximations are given in the literature, for example, see
[97], [98]. Using the approximations, the 5% critical value is
obtained to be 1.36. That is, if the estimated value of Dn is
more than 1.36/

√
n or more than 0.0136, then, we reject the

null hypothesis that the random sample is generated from
the corresponding hypo-exponential distribution.

In the next result, we establish that when the edges
λi,1, λ1,2, . . . , λη−1,j are multiplied by some factor (i.e., Def-
inition 2.1, when Eve claims that her compromised nodes
meet more frequently than in reality) and as a result the
realization is in fact not from a hypo-exponential distribution
F0(.). Then, the probability of rejecting the null hypothesis
that the sample size is not from F0(.) approaches to one. We
begin by denoting the alternative distribution by F1(.)

In the sequel, we compute the probability when
x1, x2, . . . , xn are sampled from F1(.), then, the null hypoth-
esis H0 : F1(.) = F0(.) is rejected using the notions from
[99]. Recognize that the probability under consideration is in
fact power of the underlying statistical test. Also note that
the probability of rejecting the null hypothesis is quantified
by Pr(Dn > dα;n/

√
n), where dα;n is the critical value of

approximate Kolmogorov-Smirnov distribution at level α.
For our case, α = 0.05, and dα;n = 1.36.

Theorem 2.

lim
n→∞

Pr(Dn > dα;n/
√
n) = 1

Proof. Let ∆ = maxx |F1(x)−F0(x)| and let x0 be a value of
x such that ∆ = |F1(x0)− F0(x0)|. Then, Pr(Dn > dα;n) >

1− Pr(F0(x0)− dα;n√
n
< Dn(x0) < F0(x0) +

dα;n√
n

.
Replacing F0(x0) = F1(x0)±∆ we obtain

Pr(Dn > dα;n) > 1− Pr(
−dα;n ±∆

√
n√

F1(x0)(1− F1(x0))
<

Dn(x0)− F1(x0)
√
n√

F1(x0)(1− F1(x0))
<

dα;n ±∆
√
n√

F1(x0)(1− F1(x0))
).

For sufficiently large n, −dα;n ± ∆
√
n and dα;n ± ∆

√
n

will have same sign and F1(x0) can be replaced with 1
2 .

With these ingredients, and for large n, using a Normal
approximation, we get

Pr(Dn > dα;n) > 1−
∫ 2(dα;n±∆

√
n

2(−dα;n±∆
√
n)
φ(t)dt
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TABLE 1: Minimum number of data packets, k, to detect the
maximum difference between the hypo-exponential distribu-
tion and the sample distribution.

Max. Absolute Difference Min. k
0.14 94.4
0.15 82.2
0.16 72.2
0.17 64.0
0.18 57.1
0.19 51.2
0.20 46.2
0.25 29.6
0.30 20.5

where φ(t) is the density function of the standard Normal
distribution. Note that, as n→∞, the integral tends to zero
which completes the proof.

In order to statistically investigate the required number
of received packets, k, that are needed for the KS2ST to
detect the CollusiveHijack attack via PDT, HDT, and EHDT.
We refer the readers to Figure 2 in [100], which depicts
the lower bound for the power of the Kolmogorov-Smirnov
test. Note that the actual power is higher in practice. For
our case, we consider the curve for α = 0.05. Hence, the
critical value at this point is 1.36 (discussed at the begin-
ning of this section). Now, when the maximum absolute
difference between the hypo-exponential distribution and
the sampling distribution of the random samples is 0.14, to
obtain a test with power more than 0.5 we need to solve
the equation 0.14

√
(n) = 1.36 (n is the required number

of packets to detect the 0.14 difference). This gives rise the
required number of packets as at least 94. Similarly, when
the maximum absolute differences are higher, less number of
packets are required to detect such differences. In Table 1, we
provide the minimum number of k to detect for some values
of the maximum absolute difference. We note that when
the maximum absolute difference is 0.3, then, 20 packets
postulates at least 0.5 power. In our work, we conducted
experiments with different number of packets (20, 40, 60,
80, 100) to capture a wide range of existing differences. As
shown in Figures 6(a)-6(g) and 10(a)-10(g), PDT achieved
≥ 90.0% detection rates for most of the cases (when Eve
hijacks ≥ 60 packets). However, for HDT and EHDT, the
detection rates (when Eve hijacks ≥ 60 packets) were ≥
99.0% (Figures 6(h) and 10(h)). We acknowledge that the
detection rates of our approaches decreases when k < 60
and Eve might not be detected in that case. Specifically, if
Eve changes her behaviour (e.g., stops lying about the ICTs
of her compromised nodes) before k becomes ≥ 60.
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